
Jean-Luc Gallois

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7396608/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Genes and Development, 2004, 18, 375-380.	2.7	229
2	Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in <i>Arabidopsis</i> . Development (Cambridge), 2002, 129, 3207-3217.	1.2	221
3	Natural variation and functional analyses provide evidence for coâ€evolution between plant eIF4E and potyviral VPg. Plant Journal, 2008, 54, 56-68.	2.8	207
4	Simultaneous mutations in translation initiation factors eIF4E and eIF(iso)4E are required to prevent pepper veinal mottle virus infection of pepper. Journal of General Virology, 2006, 87, 2089-2098.	1.3	140
5	Mimicking natural polymorphism in <i><scp>elF</scp>4E</i> by <scp>CRISPR</scp> â€Cas9 base editing is associated with resistance to potyviruses. Plant Biotechnology Journal, 2019, 17, 1736-1750.	4.1	129
6	Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development (Cambridge), 2002, 129, 3207-17.	1.2	110
7	Coordinated and selective recruitment of eIF4E and eIF4G factors for potyvirus infection inArabidopsis thaliana. FEBS Letters, 2007, 581, 1041-1046.	1.3	109
8	AtPRD1 is required for meiotic double strand break formation in Arabidopsis thaliana. EMBO Journal, 2007, 26, 4126-4137.	3.5	102
9	elF4E Resistance: Natural Variation Should Guide Gene Editing. Trends in Plant Science, 2017, 22, 411-419.	4.3	98
10	The Solanum tuberosum GBSSI gene: a target for assessing gene and base editing in tetraploid potato. Plant Cell Reports, 2019, 38, 1065-1080.	2.8	78
11	A <scp>TILLING</scp> approach to generate broadâ€spectrum resistance to potyviruses in tomato is hampered by <i>eIF4E</i> gene redundancy. Plant Journal, 2016, 85, 717-729.	2.8	76
12	Single amino acid changes in the turnip mosaic virus viral genome-linked protein (VPg) confer virulence towards Arabidopsis thaliana mutants knocked out for eukaryotic initiation factors eIF(iso)4E and eIF(iso)4G. Journal of General Virology, 2010, 91, 288-293.	1.3	69
13	The <i>Arabidopsis</i> Proteasome RPT5 Subunits Are Essential for Gametophyte Development and Show Accession-Dependent Redundancy. Plant Cell, 2009, 21, 442-459.	3.1	65
14	Identification of major loci and genomic regions controlling acid and volatile content in tomato fruit: implications for flavor improvement. New Phytologist, 2017, 215, 624-641.	3.5	65
15	Transâ€species synthetic gene design allows resistance pyramiding and broadâ€spectrum engineering of virus resistance in plants. Plant Biotechnology Journal, 2018, 16, 1569-1581.	4.1	64
16	PUX10 Is a CDC48A Adaptor Protein That Regulates the Extraction of Ubiquitinated Oleosins from Seed Lipid Droplets in Arabidopsis. Plant Cell, 2018, 30, 2116-2136.	3.1	64
17	The Arabidopsis nuclear DAL gene encodes a chloroplast protein which is required for the maturation of the plastid ribosomal RNAs and is essential for chloroplast differentiation. Plant Molecular Biology, 2003, 51, 651-663.	2.0	62
18	Cloning of the <scp>A</scp> rabidopsis <i>rwm1</i> gene for resistance to <i><scp>W</scp>atermelon mosaic virus</i> points to a new function for natural virus resistance genes. Plant Journal, 2014, 79, 705-716.	2.8	62

JEAN-LUC GALLOIS

#	Article	IF	CITATIONS
19	Role of the Genetic Background in Resistance to Plant Viruses. International Journal of Molecular Sciences, 2018, 19, 2856.	1.8	62
20	Expanding the CRISPR Toolbox in P. patens Using SpCas9-NG Variant and Application for Gene and Base Editing in Solanaceae Crops. International Journal of Molecular Sciences, 2020, 21, 1024.	1.8	44
21	Precision Breeding Made Real with CRISPR: Illustration through Genetic Resistance to Pathogens. Plant Communications, 2020, 1, 100102.	3.6	32
22	Prime Editing in the model plant Physcomitrium patens and its potential in the tetraploid potato. Plant Science, 2022, 316, 111162.	1.7	32
23	Functional characterization of the plant ubiquitin regulatory X (UBX) domain-containing protein AtPUX7 in Arabidopsis thaliana. Gene, 2013, 526, 299-308.	1.0	29
24	Pyramiding resistances based on translation initiation factors in <i>Arabidopsis</i> is impaired by male gametophyte lethality. Plant Signaling and Behavior, 2014, 9, e27940.	1.2	29
25	Specific requirement for translation initiation factor 4E or its isoform drives plant host susceptibility to Tobacco etch virus. BMC Plant Biology, 2014, 14, 67.	1.6	24
26	A new eIF4E1 allele characterized by RNAseq data mining is associated with resistance to potato virus Y in tomato albeit with a low durability. Journal of General Virology, 2016, 97, 3063-3072.	1.3	23
27	The Arabidopsis chloroplast ribosomal protein L21 is encoded by a nuclear gene of mitochondrial origin. Gene, 2001, 274, 179-185.	1.0	20
28	Human Management of a Wild Plant Modulates the Evolutionary Dynamics of a Gene Determining Recessive Resistance to Virus Infection. PLoS Genetics, 2016, 12, e1006214.	1.5	20
29	Knock-out mutation of eukaryotic initiation factor 4E2 (eIF4E2) confers resistance to pepper veinal mottle virus in tomato. Virology, 2020, 539, 11-17.	1.1	19
30	A complex <i>elF4E locus</i> impacts the durability of <i>va</i> resistance to <i>Potato virus Y</i> in tobacco. Molecular Plant Pathology, 2019, 20, 1051-1066.	2.0	18
31	A blueprint for gene function analysis through Base Editing in the model plant <i>Physcomitrium (Physcomitrella) patens</i> . New Phytologist, 2021, 230, 1258-1272.	3.5	18
32	When a knockout is an Achilles' heel: Resistance to one potyvirus species triggers hypersusceptibility to another one in Arabidopsis thaliana. Molecular Plant Pathology, 2021, 22, 334-347.	2.0	18
33	CRISPR-based knock-out of eIF4E2 in a cherry tomato background successfully recapitulates resistance to pepper veinal mottle virus. Plant Science, 2022, 316, 111160.	1.7	18
34	A SNP associated with alternative splicing of RPT5b causes unequal redundancy between RPT5a and RPT5b among Arabidopsis thaliananatural variation. BMC Plant Biology, 2010, 10, 158.	1.6	9
35	Analysis of tomato spotted wilt virus RNA-dependent RNA polymerase adaptative evolution and constrained domains using homology protein structure modelling. Journal of General Virology, 2020, 101, 334-346.	1.3	5
36	Gene Editing in Potato Using CRISPR-Cas9 Technology. Methods in Molecular Biology, 2021, 2354, 331-351.	0.4	4

3

#	Article	IF	CITATIONS
37	Exploring New Routes for Genetic Resistances to Potyviruses: The Case of the Arabidopsis thaliana Phosphoglycerates Kinases (PGK) Metabolic Enzymes. Viruses, 2022, 14, 1245.	1.5	4

Host Plant Resistance to Pests and Pathogens, the Genetic Leverage in Integrated Pest and Disease Management., 2020,, 259-283.