Lucy A Marshall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7396241/publications.pdf Version: 2024-02-01

Ι ΠΟΥ Α ΜΑΡΟΗΛΙΙ

#	Article	IF	CITATIONS
1	Transboundary river basins: Scenarios of hydropower development and operation under extreme climate conditions. Science of the Total Environment, 2022, 803, 149828.	3.9	5
2	Hydrologic multi-model ensemble predictions using variational Bayesian deep learning. Journal of Hydrology, 2022, 604, 127221.	2.3	13
3	Bayesian Model Calibration Using Surrogate Streamflow in Ungauged Catchments. Water Resources Research, 2022, 58, .	1.7	7
4	Incorporating multiple observational uncertainties in water quality model calibration. Hydrological Processes, 2022, 36, .	1.1	4
5	Quantifying input uncertainty in the calibration of water quality models: reordering errors via the secant method. Hydrology and Earth System Sciences, 2022, 26, 1203-1221.	1.9	5
6	Projected Changes in the Tibetan Plateau Snowpack Resulting From Rising Global Temperatures. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	9
7	Coevolution of machine learning and processâ€based modelling to revolutionize Earth and environmental sciences: A perspective. Hydrological Processes, 2022, 36, .	1.1	20
8	A conceptual model for simulating streamflow in a changing snow-covered catchment: application to the data-sparse upper Brahmaputra River basin. Hydrological Sciences Journal, 2022, 67, 1669-1682.	1.2	0
9	Modelling daily transmission losses in basinâ€scale river system models under changing hydrological regimes. Hydrological Processes, 2022, 36, .	1.1	3
10	Quantifying the Effects of Sea Level Rise on Estuarine Drainage Systems. Water Resources Research, 2022, 58, .	1.7	10
11	Which Rainfall Errors Can Hydrologic Models Handle? Implications for Using Satelliteâ€Đerived Products in Sparsely Gauged Catchments. Water Resources Research, 2022, 58, .	1.7	5
12	Landscape changes and their hydrologic effects: Interactions and feedbacks across scales. Earth-Science Reviews, 2021, 212, 103466.	4.0	27
13	Quantifying input error in hydrologic modeling using the Bayesian error analysis with reordering (BEAR) approach. Journal of Hydrology, 2021, 598, 126202.	2.3	14
14	Jointly Calibrating Hydrologic Model Parameters and State Adjustments. Water Resources Research, 2021, 57, e2020WR028499.	1.7	5
15	Bayesian LSTM With Stochastic Variational Inference for Estimating Model Uncertainty in Processâ€Based Hydrological Models. Water Resources Research, 2021, 57, e2021WR029772.	1.7	29
16	Improving the Combination of Satellite Soil Moisture Data Sets by Considering Error Cross Correlation: A Comparison Between Triple Collocation (TC) and Extended Double Instrumental Variable (EIVD) Alternatives. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 7285-7295.	2.7	5
17	Modelling climate change impacts on the Brahmaputra streamflow resulting from changes in snowpack attributes. Journal of Hydrology, 2021, 603, 126998.	2.3	11
18	Daily time series of river water levels derived from a seasonal linear model using multisource satellite products under uncertainty. Journal of Hydrology, 2021, 602, 126783.	2.3	1

#	Article	IF	CITATIONS
19	Characterizing distributed hydrological model residual errors using a probabilistic long short-term memory network. Journal of Hydrology, 2021, 603, 126888.	2.3	22
20	Assessing Goodness of Fit for Verifying Probabilistic Forecasts. Forecasting, 2021, 3, 763-773.	1.6	6
21	Modeling Water Quality in Watersheds: From Here to the Next Generation. Water Resources Research, 2020, 56, e2020WR027721.	1.7	54
22	ls Past Variability a Suitable Proxy for Future Change? A Virtual Catchment Experiment. Water Resources Research, 2020, 56, e2019WR026275.	1.7	22
23	Simulation of streamflow and instream loads of total suspended solids and nitrate in a large transboundary river basin using Source model and geospatial analysis. Science of the Total Environment, 2020, 744, 140656.	3.9	2
24	Linking Changes in Land Cover and Land Use of the Lower Mekong Basin to Instream Nitrate and Total Suspended Solids Variations. Sustainability, 2020, 12, 2992.	1.6	11
25	The influence of data transformations in simulating Total Suspended Solids using Bayesian inference. Environmental Modelling and Software, 2019, 121, 104493.	1.9	17
26	Investigating strategies to improve hydrologic model performance in a changing climate. Journal of Hydrology, 2019, 579, 124219.	2.3	21
27	Transboundary river catchment areas of developing countries: Potential and limitations of watershed models for the simulation of sediment and nutrient loads. A review. Journal of Hydrology: Regional Studies, 2019, 24, 100605.	1.0	7
28	Using 3D robust smoothing to fill land surface temperature gaps at the continental scale. International Journal of Applied Earth Observation and Geoinformation, 2019, 82, 101879.	1.4	18
29	Characterising uncertainty in precipitation downscaling using a Bayesian approach. Advances in Water Resources, 2019, 129, 189-197.	1.7	11
30	Ecohydrologic Error Models for Improved Bayesian Inference in Remotely Sensed Catchments. Water Resources Research, 2019, 55, 4533-4549.	1.7	7
31	Modelling precipitation uncertainties in a multi-objective Bayesian ecohydrological setting. Advances in Water Resources, 2019, 123, 12-22.	1.7	12
32	Attributing uncertainty in streamflow simulations due to variable inputs via the Quantile Flow Deviation metric. Advances in Water Resources, 2018, 116, 40-55.	1.7	7
33	Bayesian Networks in coastal engineering: Distinguishing descriptive and predictive applications. Coastal Engineering, 2018, 135, 16-30.	1.7	42
34	Dataâ€Driven Model Uncertainty Estimation in Hydrologic Data Assimilation. Water Resources Research, 2018, 54, 1252-1280.	1.7	64
35	Insights on the impact of systematic model errors on data assimilation performance in changing catchments. Advances in Water Resources, 2018, 113, 202-222.	1.7	13
36	Typecasting catchments: Classification, directionality, and the pursuit of universality. Advances in Water Resources, 2018, 112, 245-253.	1.7	8

#	Article	IF	CITATIONS
37	Deriving daily water levels from satellite altimetry and land surface temperature for sparsely gauged catchments: A case study for the Mekong River. Remote Sensing of Environment, 2018, 212, 31-46.	4.6	26
38	A method for combining SRTM DEM and ASTER GDEM2 to improve topography estimation in regions without reference data. Remote Sensing of Environment, 2018, 210, 229-241.	4.6	43
39	A Bayesian alternative for multi-objective ecohydrological model specification. Journal of Hydrology, 2018, 556, 25-38.	2.3	18
40	Revisiting Pan Evaporation Trends in Australia a Decade on. Geophysical Research Letters, 2018, 45, 11,164.	1.5	53
41	Assessing the Potential Robustness of Conceptual Rainfallâ€Runoff Models Under a Changing Climate. Water Resources Research, 2018, 54, 5030-5049.	1.7	29
42	A comparison of methods for discretizing continuous variables in Bayesian Networks. Environmental Modelling and Software, 2018, 108, 61-66.	1.9	30
43	Implications of future climate change for event-based hydrologic models. Advances in Water Resources, 2018, 119, 95-110.	1.7	37
44	Time-varying parameter models for catchments with land use change: the importance of model structure. Hydrology and Earth System Sciences, 2018, 22, 2903-2919.	1.9	31
45	Calibrating and assessing uncertainty in coastal numerical models. Coastal Engineering, 2017, 125, 28-41.	1.7	43
46	Creativity, Uncertainty, and Automated Model Building. Ground Water, 2017, 55, 693-697.	0.7	12
47	A coupled metabolicâ€hydraulic model and calibration scheme for estimating wholeâ€river metabolism during dynamic flow conditions. Limnology and Oceanography: Methods, 2017, 15, 847-866.	1.0	13
48	Projected warming portends seasonal shifts of stream temperatures in the Crown of the Continent Ecosystem, USA and Canada. Climatic Change, 2017, 144, 641-655.	1.7	15
49	Spatial Heterogeneity of Snow Density and Its Influence on Snow Water Equivalence Estimates in a Large Mountainous Basin. Hydrology, 2016, 3, 3.	1.3	18
50	Functional models for longitudinal data with covariate dependent smoothness. Electronic Journal of Statistics, 2016, 10, .	0.4	1
51	Detecting non-stationary hydrologic model parameters in a paired catchment system using data assimilation. Advances in Water Resources, 2016, 94, 103-119.	1.7	57
52	A metric for attributing variability in modelled streamflows. Journal of Hydrology, 2016, 541, 1475-1487.	2.3	10
53	Diagnostic calibration and crossâ€catchment transferability of a simple processâ€consistent hydrologic model. Hydrological Processes, 2016, 30, 5027-5038	1.1	9
54	Hydrologic modeling in dynamic catchments: A data assimilation approach. Water Resources Research, 2016, 52, 3350-3372.	1.7	76

#	Article	IF	CITATIONS
55	Tools for investigating the prior distribution in Bayesian hydrology. Journal of Hydrology, 2016, 538, 551-562.	2.3	19
56	Fire and flood expand the floodplain shifting habitat mosaic concept. Freshwater Science, 2015, 34, 1366-1382.	0.9	25
57	Modeling residual hydrologic errors with Bayesian inference. Journal of Hydrology, 2015, 528, 29-37.	2.3	88
58	A quantitative approach for integrating multiple lines of evidence for the evaluation of environmental health risks. PeerJ, 2015, 3, e730.	0.9	4
59	Approximate Bayesian Computation and Bayes' Linear Analysis: Toward High-Dimensional ABC. Journal of Computational and Graphical Statistics, 2014, 23, 65-86.	0.9	31
60	ESTIMATING THERMAL REGIMES OF BULL TROUT AND ASSESSING THE POTENTIAL EFFECTS OF CLIMATE WARMING ON CRITICAL HABITATS. River Research and Applications, 2014, 30, 204-216.	0.7	68
61	Changes in field-level cropping sequences: Indicators of shifting agricultural practices. Agriculture, Ecosystems and Environment, 2014, 189, 11-20.	2.5	19
62	Adoption of cropping sequences in northeast Montana: A spatio-temporal analysis. Agriculture, Ecosystems and Environment, 2014, 197, 77-87.	2.5	15
63	Predicting hydrologic response through a hierarchical catchment knowledgebase: A Bayes empirical Bayes approach. Water Resources Research, 2014, 50, 1189-1204.	1.7	19
64	A Bayesian method for multi-pollution source water quality model and seasonal water quality management in river segments. Environmental Modelling and Software, 2014, 57, 216-226.	1.9	21
65	Mixtures of experts for understanding model discrepancy in dynamic computer models. Computational Statistics and Data Analysis, 2014, 71, 491-505.	0.7	5
66	Calibrating hydrologic models in flow-corrected time. Water Resources Research, 2014, 50, 748-753.	1.7	4
67	A Beta Regression Model for Improved Solar Radiation Predictions. Journal of Applied Meteorology and Climatology, 2013, 52, 1923-1938.	0.6	9
68	Modelling and understanding the hierarchy in a mixture of experts using multiple catchment descriptors. Journal of Hydrology, 2013, 507, 273-286.	2.3	0
69	Object-oriented crop classification using multitemporal ETM+ SLC-off imagery and random forest. GIScience and Remote Sensing, 2013, 50, 418-436.	2.4	88
70	Specifying a hierarchical mixture of experts for hydrologic modeling: Gating function variable selection. Water Resources Research, 2013, 49, 2926-2939.	1.7	18
71	Using field data to inform and evaluate a new model of catchment hydrologic connectivity. Water Resources Research, 2013, 49, 6834-6846.	1.7	30
72	The ensemble Kalman filter is an ABC algorithm. Statistics and Computing, 2012, 22, 1273-1276.	0.8	11

#	Article	IF	CITATIONS
73	Generalized likelihood uncertainty estimation (GLUE) and approximate Bayesian computation: What's the connection?. Water Resources Research, 2012, 48, .	1.7	55
74	Efficient hydrological model parameter optimization with Sequential Monte Carlo sampling. Environmental Modelling and Software, 2012, 38, 283-295.	1.9	38
75	Environmental fate model for ultra-low-volume insecticide applications used for adult mosquito management. Science of the Total Environment, 2012, 438, 72-79.	3.9	20
76	It takes a community to raise a hydrologist: the Modular Curriculum for Hydrologic Advancement (MOCHA). Hydrology and Earth System Sciences, 2012, 16, 3405-3418.	1.9	31
77	Investigating controls on the thermal sensitivity of Pennsylvania streams. Hydrological Processes, 2012, 26, 771-785.	1.1	162
78	Quantifying watershed sensitivity to spatially variable N loading and the relative importance of watershed N retention mechanisms. Water Resources Research, 2011, 47, .	1.7	28
79	A watershedâ€scale assessment of a process soil CO ₂ production and efflux model. Water Resources Research, 2011, 47, .	1.7	26
80	Bayesian calibration and uncertainty analysis of hydrological models: A comparison of adaptive Metropolis and sequential Monte Carlo samplers. Water Resources Research, 2011, 47, .	1.7	49
81	Landscape structure and climate influences on hydrologic response. Water Resources Research, 2011, 47, .	1.7	76
82	Exploring uncertainty and model predictive performance concepts via a modular snowmelt-runoff modeling framework. Environmental Modelling and Software, 2010, 25, 691-701.	1.9	34
83	Development of a formal likelihood function for improved Bayesian inference of ephemeral catchments. Water Resources Research, 2010, 46, .	1.7	83
84	Hydrologic connectivity between landscapes and streams: Transferring reach―and plotâ€scale understanding to the catchment scale. Water Resources Research, 2009, 45, .	1.7	430
85	A single model ensemble versus a dynamic modeling platform: Semi-distributed rainfall runoff modeling in a Hierarchical Mixtures of Experts framework. Geophysical Research Letters, 2007, 34, .	1.5	4
86	Towards dynamic catchment modelling: a Bayesian hierarchical mixtures of experts framework. Hydrological Processes, 2007, 21, 847-861.	1.1	73
87	Taking the pulse of hydrology education. Hydrological Processes, 2007, 21, 1789-1792.	1.1	40
88	Modeling the catchment via mixtures: Issues of model specification and validation. Water Resources Research, 2006, 42, .	1.7	55
89	Hydrological model selection: A Bayesian alternative. Water Resources Research, 2005, 41,	1.7	78
90	A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling. Water Resources Research, 2004, 40, .	1.7	193