Serkan Selli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7396163/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HPLC determination of organic acids, sugars, phenolic compositions and antioxidant capacity of orange juice and orange wine made from a Turkish cv. Kozan. Microchemical Journal, 2009, 91, 187-192.	2.3	305
2	Determination of volatile, phenolic, organic acid and sugar components in a Turkish cv. Dortyol (<i>Citrus sinensis</i> L. Osbeck) orange juice. Journal of the Science of Food and Agriculture, 2011, 91, 1855-1862.	1.7	163
3	Determination of phenolic composition and antioxidant capacity of blood orange juices obtained from cvs. Moro and Sanguinello (Citrus sinensis (L.) Osbeck) grown in Turkey. Food Chemistry, 2008, 107, 1710-1716.	4.2	118
4	Evaluation of chemical constituents and antioxidant activity of sweet cherry (Prunus avium L.) cultivars. International Journal of Food Science and Technology, 2011, 46, 2530-2537.	1.3	104
5	Analysis of volatile compounds of wild gilthead sea bream (Sparus aurata) by simultaneous distillation–extraction (SDE) and GC–MS. Microchemical Journal, 2009, 93, 232-235.	2.3	102
6	Aroma components of cv. Muscat of Bornova wines and influence of skin contact treatment. Food Chemistry, 2006, 94, 319-326.	4.2	100
7	Characterization of Aroma-Active Compounds in Rainbow Trout (Oncorhynchus mykiss) Eliciting an Off-Odor. Journal of Agricultural and Food Chemistry, 2006, 54, 9496-9502.	2.4	95
8	Characterization of the most aroma-active compounds in cherry tomato by application of the aroma extract dilution analysis. Food Chemistry, 2014, 165, 540-546.	4.2	95
9	Volatile composition of red wine from cv . Kalecik KarasÎ ¹ grown in central Anatolia. Food Chemistry, 2004, 85, 207-213.	4.2	94
10	Wine flavor enhancement through the use of exogenous fungal glycosidases. Enzyme and Microbial Technology, 2003, 33, 581-587.	1.6	87
11	Odour-active and off-odour components in rainbow trout (Oncorhynchus mykiss) extracts obtained by microwave assisted distillation–solvent extraction. Food Chemistry, 2009, 114, 317-322.	4.2	85
12	A study on some chemical and physico-mechanic properties of three sweet cherry varieties (Prunus) Tj ETQq0 0	0 rgBT /0\ 2.7	verlogk 10 Tf 5
13	Aromatic profile and odour-activity value of blood orange juices obtained from Moro and Sanguinello (Citrus sinensis L. Osbeck). Industrial Crops and Products, 2011, 33, 727-733.	2.5	79
14	Characterization of the Most Odor-Active Volatiles of Orange Wine Made from a Turkish cv. Kozan () Tj ETQq0 () 0 rgBT /C	overlock 10 Tf
15	Characterization of the Aroma-Active, Phenolic, and Lipid Profiles of the Pistachio (<i>Pistacia) Tj ETQq1 1 0.784 Food Chemistry, 2015, 63, 7830-7839.</i>	1314 rgBT 2.4	/Overlock 10 72
16	GC–MS–olfactometric characterization of the most aroma-active components in a representative aromatic extract from Iranian saffron (Crocus sativus L.). Food Chemistry, 2015, 182, 251-256.	4.2	71

17	GC–MS–olfactometric characterization of the key aroma compounds in Turkish olive oils by application of the aroma extract dilution analysis. Food Research International, 2013, 54, 1987-1994.	2.9	67
18	Effect of skin contact on the aroma composition of the musts of Vitis vinifera L. cv. Muscat of Bornova and Narince grown in Turkey. Food Chemistry, 2003, 81, 341-347.	4.2	65

#	Article	IF	CITATIONS
19	Impact of production and drying methods on the volatile and phenolic characteristics of fresh and powdered sweet red peppers. Food Chemistry, 2021, 338, 128129.	4.2	63
20	Comparative Evaluation of Key Aroma-Active Compounds in Raw and Cooked Red Mullet (<i>Mullus) Tj ETQq0 0 65, 8402-8408.</i>	0 rgBT /Ov 2.4	verlock 10 Tf 61
21	CHARACTERIZATION OF PHENOLIC COMPOUNDS IN STRAWBERRY FRUITS BY RP-HPLC-DAD AND INVESTIGATION OF THEIR ANTIOXIDANT CAPACITY. Journal of Liquid Chromatography and Related Technologies, 2011, 34, 2495-2504.	0.5	60
22	Bioactive compounds and antioxidant potential in tomato pastes as affected by hot and cold break process. Food Chemistry, 2017, 220, 31-41.	4.2	59
23	Volatile flavour components of orange juice obtained from the cv. Kozan of Turkey. Journal of Food Composition and Analysis, 2004, 17, 789-796.	1.9	57
24	Screening of bioactive components in grape and apple vinegars: Antioxidant and antimicrobial potential. Journal of the Institute of Brewing, 2017, 123, 407-416.	0.8	57
25	Identification of volatile aroma compounds of strawberry wine using solid-phase microextraction techniques coupled with gas chromatography–mass spectrometry. Flavour and Fragrance Journal, 2006, 21, 68-71.	1.2	56
26	Characterization of the Volatile, Phenolic and Antioxidant Properties of Monovarietal Olive Oil Obtained from cv. Halhali. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 1685-1696.	0.8	55
27	Differentiation of Volatile Profiles and Odor Activity Values of Turkish Coffee and French Press Coffee. Journal of Food Processing and Preservation, 2016, 40, 1116-1124.	0.9	55
28	Characterization of aroma-active and phenolic profiles of wild thyme (Thymus serpyllum) by GC-MS-Olfactometry and LC-ESI-MS/MS. Journal of Food Science and Technology, 2016, 53, 1957-1965.	1.4	55
29	Characterization of aroma and phenolic composition of carrot (Daucus carota †Nantes') powders obtained from intermittent microwave drying using GC†"MS and LC—MS/MS. Food and Bioproducts Processing, 2020, 119, 350-359.	1.8	55
30	Pistachio oil (Pistacia vera L. cv. Uzun): Characterization of key odorants in a representative aromatic extract by GC-MS-olfactometry and phenolic profile by LC-ESI-MS/MS. Food Chemistry, 2018, 240, 24-31.	4.2	54
31	Comparative evaluation of the phenolic content and antioxidant capacity of sun-dried raisins. Journal of the Science of Food and Agriculture, 2013, 93, 2963-2972.	1.7	50
32	Characterization of the Key Aroma Compounds in Turkish Olive Oils from Different Geographic Origins by Application of Aroma Extract Dilution Analysis (AEDA). Journal of Agricultural and Food Chemistry, 2014, 62, 391-401.	2.4	49
33	Comparative evaluation of volatiles, phenolics, sugars, organic acids and antioxidant properties of Sel-42 and Tainung papaya varieties. Food Chemistry, 2015, 173, 912-919.	4.2	49
34	Influence of Saccharomyces cerevisiae strains on fermentation and flavor compounds of white wines made from cv. Emir grown in Central Anatolia, Turkey. Journal of Industrial Microbiology and Biotechnology, 2002, 29, 28-33.	1.4	48
35	Characterization of the Key Aroma Compounds in Cooked Grey Mullet (Mugil cephalus) by Application of Aroma Extract Dilution Analysis. Journal of Agricultural and Food Chemistry, 2011, 59, 654-659.	2.4	48
36	Comparative elucidation of colour, volatile and phenolic profiles of black carrot (Daucus carota L.) pomace and powders prepared by five different drying methods. Food Chemistry, 2022, 369, 130941.	4.2	46

#	Article	IF	CITATIONS
37	Improvement of anthocyanin content in the cv. Öküzgözü wines by using pectolytic enzymes. Food Chemistry, 2007, 105, 334-339.	4.2	45
38	Flavour components of orange wine made from a Turkish cv. Kozan. International Journal of Food Science and Technology, 2003, 38, 587-593.	1.3	43
39	Influence of different maceration times on the anthocyanin composition of wines made from Vitis vinifera L. cvs. Boğazkere and Öküzgözü. Journal of Food Engineering, 2006, 77, 1012-1017.	2.7	42
40	Variations in the key aroma and phenolic compounds of champignon (Agaricus bisporus) and oyster (Pleurotus ostreatus) mushrooms after two cooking treatments as elucidated by GC–MS-O and LC-DAD-ESI-MS/MS. Food Chemistry, 2021, 354, 129576.	4.2	42
41	Comparison of aroma compounds in Dwarf Cavendish banana (Musa spp. AAA) grown from open-field and protected cultivation area. Scientia Horticulturae, 2012, 141, 76-82.	1.7	38
42	Comparative Study of Bioactive Constituents in Turkish Olive Oils by LC-ESI/MS/MS. International Journal of Food Properties, 2015, 18, 2231-2245.	1.3	38
43	Elucidation of aroma-active compounds and chlorogenic acids of Turkish coffee brewed from medium and dark roasted Coffea arabica beans. Food Chemistry, 2021, 338, 127821.	4.2	37
44	Effect of skin contact on the free and bound aroma compounds of the white wine of Vitis vinifera L. cv Narince. Food Control, 2006, 17, 75-82.	2.8	34
45	HPLC-DAD–MS Analysis of Anthocyanins in Rose Wine Made From cv. Öküzgözü Grapes, and Effect of Maceration Time on Anthocyanin Content. Chromatographia, 2007, 66, 207-212.	0.7	33
46	Characterization and comparative evaluation of volatile, phenolic and antioxidant properties of pistachio (<i>Pistacia vera</i> L.) hull. Journal of Essential Oil Research, 2017, 29, 262-270.	1.3	31
47	Elucidation of key odorants in Beninese Roselle (Hibiscus sabdariffa L.) infusions prepared by hot and cold brewing. Food Research International, 2020, 133, 109133.	2.9	31
48	LC-DAD/ESI-MS/MS characterization of phenolic constituents in Tunisian extra-virgin olive oils: Effect of olive leaves addition on chemical composition. Food Research International, 2017, 100, 477-485.	2.9	30
49	Identification of phenolic compositions and the antioxidant capacity of mandarin juices and wines. Journal of Food Science and Technology, 2014, 51, 1094-1101.	1.4	29
50	Gas Chromatography–Mass Spectrometry–Olfactometry To Control the Aroma Fingerprint of Extra Virgin Olive Oil from Three Tunisian Cultivars at Three Harvest Times. Journal of Agricultural and Food Chemistry, 2018, 66, 2851-2861.	2.4	29
51	Effect of bottle colour and storage conditions on browning of orange wine. Molecular Nutrition and Food Research, 2002, 46, 64-67.	0.0	27
52	LC–ESI–MS Characterization of Phenolic Profiles Turkish Olive Oils as Influenced by Geographic Origin and Harvest Year. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 385-394.	0.8	25
53	Aroma-active compounds, sensory profile, and phenolic composition of Fondillón. Food Chemistry, 2020, 316, 126353.	4.2	25
54	Characterization of Aromaâ€Active Compounds in Iranian cv. Mari Olive Oil by Aroma Extract Dilution Analysis and GC–MSâ€Olfactometry. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 1595-1603.	0.8	24

#	Article	IF	CITATIONS
55	Characterization of key aroma compounds in fresh and roasted terebinth fruits using aroma extract dilution analysis and GC–MS-Olfactometry. Microchemical Journal, 2019, 145, 96-104.	2.3	24
56	Natural Products for Infectious Diseases. Evidence-based Complementary and Alternative Medicine, 2016, 2016, 1-1.	0.5	23
57	Optimization of Headspace Solid-Phase Microextraction with Different Fibers for the Analysis of Volatile Compounds of White-Brined Cheese by Using Response Surface Methodology. Food Analytical Methods, 2017, 10, 1956-1964.	1.3	23
58	The most aroma-active compounds in shade-dried aerial parts of basil obtained from Iran and Turkey. Industrial Crops and Products, 2018, 124, 692-698.	2.5	23
59	GC-MS-Olfactometric Differentiation of Aroma-Active Compounds in Turkish Heat-Treated Sausages by Application of Aroma Extract Dilution Analysis. Food Analytical Methods, 2019, 12, 729-741.	1.3	23
60	Targeted analysis for detection the adulteration in extra virgin olive oil's using LC-DAD/ESI–MS/MS and combined with chemometrics tools. European Food Research and Technology, 2020, 246, 1661-1677.	1.6	22
61	Volatileï¬,avour components of mandarin wine obtained from clementines(Citrus reticula Blanco) extracted by solid-phase microextraction. Flavour and Fragrance Journal, 2004, 19, 413-416.	1.2	21
62	Application of glycosidic aroma precursors to enhance the aroma and sensory profile of dealcoholised wines. Food Research International, 2013, 51, 450-457.	2.9	21
63	Aroma composition of shalgam: a traditional Turkish lactic acid fermented beverage. Journal of Food Science and Technology, 2017, 54, 2011-2019.	1.4	21
64	Non-thermal plasma effects on the lipoxygenase enzyme activity, aroma and phenolic profiles of olive oil. Innovative Food Science and Emerging Technologies, 2019, 54, 123-131.	2.7	21
65	LC-DAD-ESI-MS/MS-assisted elucidation of the phenolic compounds in shalgams: Comparison of traditional and direct methods. Food Chemistry, 2020, 305, 125505.	4.2	21
66	VOLATILE CONSTITUENTS OF ORANGE WINE OBTAINED FROM MORO ORANGES (CITRUS SINENSIS [L.]) TJ ETQq	0 0 0 rgBT 1.4	Overlock 1
67	LCâ€ÐADâ€ESIâ€MS/MS-based assessment of the bioactive compounds in fresh and fermented caper (Capparis)	Tj ETQq1	1 0.784314 20
68	Impacts of selected lactic acid bacteria strains on the aroma and bioactive compositions of fermented gilaburu (Viburnum opulus) juices. Food Chemistry, 2022, 378, 132079.	4.2	20
69	Determination of Volatiles by Odor Activity Value and Phenolics of cv. Ayvalik Early-Harvest Olive Oil. Foods, 2016, 5, 46.	1.9	19
70	GCâ€MS olfactometric and LCâ€DADâ€ESIâ€MS/MS characterization of key odorants and phenolic compounds in black dryâ€salted olives. Journal of the Science of Food and Agriculture, 2018, 98, 4104-4111.	1.7	19
71	Characterization of phenolic compounds in sweet lime (Citrus limetta) peel and freshly squeezed juices by LC-DAD-ESI-MS/MS and their antioxidant activity. Journal of Food Measurement and Characterization, 2019, 13, 3242-3249.	1.6	19

LC-DAD/ESI MS/MS characterization of fresh and cooked Capia and Aleppo red peppers (Capsicum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

#	Article	IF	CITATIONS
73	Aroma constituents of shade-dried aerial parts of Iranian dill (Anethum graveolens L.) and savory (Satureja sahendica Bornm.) by solvent-assisted flavor evaporation technique. Journal of Food Measurement and Characterization, 2017, 11, 1430-1439.	1.6	18
74	Characterization of key aroma compounds in a representative aromatic extracts from citrus and astragalus honeys based on aroma extract dilution analyses. Journal of Food Measurement and Characterization, 2017, 11, 512-522.	1.6	18
75	Quantitative determination of phenolic compounds using LC-DAD-ESI-MS/MS inÂcv. Ayvalik olive oils as affected by harvest time. Journal of Food Measurement and Characterization, 2017, 11, 226-235.	1.6	18
76	Characterization of bioactive and volatile profiles of thyme (Thymus vulgaris L.) teas as affected by infusion times. Journal of Food Measurement and Characterization, 2018, 12, 2570-2580.	1.6	18
77	Characterization of Aromaâ€Active Compounds, Phenolics, and Antioxidant Properties in Fresh and Fermented Capers (<i>Capparis spinosa</i>) by GCâ€MSâ€Olfactometry and LCâ€DADâ€ESIâ€MS/MS. Journal of Food Science, 2019, 84, 2449-2457.	1.5	18
78	The compositional properties, proteolytic–lipolytic maturation parameters and volatile compositions of commercial enzymeâ€modified cheeses with different cheese flavours. International Journal of Dairy Technology, 2019, 72, 416-426.	1.3	18
79	LC-DAD-ESI-MS/MS-based phenolic profiling of St John's Wort Teas and their antioxidant activity: Eliciting infusion induced changes. Journal of Liquid Chromatography and Related Technologies, 2019, 42, 9-15.	0.5	18
80	Fingerprint of aroma-active compounds and odor activity values in a traditional Moroccan fermented butter "Smen―using GC–MS–Olfactometry. Journal of Food Composition and Analysis, 2021, 96, 10376	1 ^{1.9}	18
81	Identification of Aroma Compounds of Lamiaceae Species in Turkey Using the Purge and Trap Technique. Foods, 2017, 6, 10.	1.9	17
82	Characterization of aroma, aromaâ€active compounds and fatty acids profiles of <i>cv</i> . Nizip Yaglik oils as affected by three maturity periods of olives. Journal of the Science of Food and Agriculture, 2019, 99, 726-740.	1.7	17
83	EFFECTS OF DIFFERENT MACERATION TIMES AND PECTOLYTIC ENZYME ADDITION ON THE ANTHOCYANIN COMPOSITION OF <i>VITIS VINIFERA</i> CV. KALECIK KARASI WINES. Journal of Food Processing and Preservation, 2009, 33, 296-311.	0.9	16
84	Screening of key odorants and anthocyanin compounds of cv. Okuzgozu (<scp><i>Vitis) Tj ETQq0 0 0 rgBT /Over LCâ€MSâ€MS. Journal of Mass Spectrometry, 2018, 53, 444-454.</i></scp>	ock 10 Tf 0.7	50 307 Td (16
85	Comparative Evaluation of the Fatty Acids and Aroma Compounds in Selected Iranian Nut Oils. European Journal of Lipid Science and Technology, 2018, 120, 1800152.	1.0	16
86	Comparative assessment of volatile and phenolic profiles of fresh black carrot (Daucus carota L.) and powders prepared by three drying methods. Scientia Horticulturae, 2021, 287, 110256.	1.7	16
87	Characterization of the key aroma compounds in tomato pastes as affected by hot and cold break process. Journal of Food Measurement and Characterization, 2018, 12, 2461-2474.	1.6	15
88	Characterization of Aroma-Active Compounds in Seed Extract of Black Cumin (Nigella sativa L.) by Aroma Extract Dilution Analysis. Foods, 2018, 7, 98.	1.9	15
89	Yeast Flora during the Fermentation of Wines Made from Vitis viniferaL. cv. Emir and Kalecik Karasi Grown in Anatolia. World Journal of Microbiology and Biotechnology, 2005, 21, 1187-1194.	1.7	14
90	LCâ€DADâ€ESIâ€MS/MS–based phenolic profiling and antioxidant activity in Turkish <i>cv</i> . Nizip Yaglik olive oils from different maturity olives. Journal of Mass Spectrometry, 2019, 54, 227-238.	0.7	14

#	Article	IF	CITATIONS
91	Elucidation of Infusion-Induced Changes in the Key Odorants and Aroma Profile of Iranian Endemic Borage (Echium amoenum) Herbal Tea. Journal of Agricultural and Food Chemistry, 2019, 67, 2607-2616.	2.4	14
92	Effect of hulling methods and roasting treatment on phenolic compounds and physicochemical properties of cultivars â€~Ohadi' and â€~Uzun' pistachios (Pistacia vera L.). Food Chemistry, 2019, 272, 418-426.	4.2	13
93	Key odorants of a Moroccan fermented milk product "Lben―using aroma extract dilution analysis. Journal of Food Science and Technology, 2019, 56, 3836-3845.	1.4	13
94	Characterization of Ayran Aroma Active Compounds by Solvent-Assisted Flavor Evaporation (SAFE) with Gas Chromatography–Mass Spectrometry–Olfactometry (GC–MS–O) and Aroma Extract Dilution Analysis (AEDA). Analytical Letters, 2019, 52, 2077-2091.	1.0	13
95	Evaluation of Differences in the Aroma Composition of Freeâ€Run and Pressed Neutral Grape Juices Obtained from Emir (<i>Vitis vinifera</i> L.). Chemistry and Biodiversity, 2011, 8, 1776-1782.	1.0	12
96	Influence of processing steps on phenolic composition of clarified and unclarified pomegranate juices as characterized by LCâ€ĐADâ€ESIâ€MS/MS. Journal of Food Processing and Preservation, 2019, 43, e14018.	0.9	12
97	LCâ€DADâ€ESIâ€MS/MS characterization of elderberry flower (<i>Sambucus nigra</i>) phenolic compounds in ethanol, methanol, and aqueous extracts. Journal of Food Processing and Preservation, 2021, 45, e14478.	0.9	12
98	Comparison of the Aroma and Some Physicochemical Properties of Grand Naine (<i>Musa) Tj ETQq0 0 0 rg Processing and Preservation, 2014, 38, 2137-2145.</i>	gBT /Over 0.9	lock 10 Tf 50 11
99	Contribution by Saccharomyces cerevisiae Yeasts to Fermentation and Flavour Compounds in Wines from cv. Kalecik karasi Grape. Journal of the Institute of Brewing, 2002, 108, 68-72.	0.8	10
100	Elucidation of Volatiles, Anthocyanins, Antioxidant and Sensory Properties of cv. Caner Pomegranate (Punica granatum L.) Juices Produced from Three Juice Extraction Methods. Foods, 2021, 10, 1497.	1.9	9
101	The effect of microencapsulated Lactobacillus rhamnosus and storage period on aroma properties of Turkish dry-fermented sausage (sucuk). Journal of Food Measurement and Characterization, 2017, 11, 2131-2141.	1.6	8
102	LCâ€DADâ€ESIâ€MS/MS and GCâ€MS profiling of phenolic and aroma compounds of high oleic sunflower oil during deepâ€fat frying. Journal of Food Processing and Preservation, 2019, 43, e13879.	0.9	8
103	Antioxidant activity in olive oils. , 2021, , 313-325.		8
104	Grape seed oil volatiles and odour activity values: a comparison with Turkish and Italian cultivars and extraction methods. Journal of Food Science and Technology, 2022, 59, 1968-1981.	1.4	8
105	Safe and Fast Fingerprint Aroma Detection in Adulterated Extra Virgin Olive Oil Using Gas Chromatography–Olfactometry-Mass Spectrometry Combined with Chemometrics. Food Analytical Methods, 2021, 14, 2121-2135.	1.3	7
106	Elucidation of the impact of four different drying methods on the phenolics, volatiles, and color properties of the peels of four types of citrus fruits. Journal of the Science of Food and Agriculture, 2022, 102, 6036-6046.	1.7	7
107	Comparative assessment of quality parameters and bioactive compounds of white and black garlic. European Food Research and Technology, 0, , .	1.6	7
108	Determination of Volatile Compounds in Sultaniye Wine by Solid-Phase Microextraction Techniques. Chemistry of Natural Compounds, 2005, 41, 382-384.	0.2	6

#	Article	IF	CITATIONS
109	Elucidation of hullingâ€induced changes in the aroma and aromaâ€active compounds of cv. Uzun pistachio (Pistacia vera). Journal of the Science of Food and Agriculture, 2019, 99, 4702-4711.	1.7	6
110	Comparative elucidation of phenolic compounds in Albanian olive oils using LC-DAD-ESI-MS/MS. Journal of Liquid Chromatography and Related Technologies, 2020, 43, 203-212.	0.5	6
111	Application of Molecularly Imprinted Polymers for the Detection of Volatile and Off-Odor Compounds in Food Matrices. ACS Omega, 2022, 7, 15258-15266.	1.6	6
112	GLC/HPLC Methods for Saffron (Crocus sativus L.). Reference Series in Phytochemistry, 2019, , 1987-2035.	0.2	5
113	Saffron (Crocus sativus L.): Its Aroma and Key Odorants. , 2020, , 69-82.		5
114	GC-MS-Olfactometric Screening of Potent Aroma Compounds in Pulps and Peels of Two Popular Turkish Fig (Ficus carica L.) Cultivars by Application of Aroma Extract Dilution Analysis. Food Analytical Methods, 2021, 14, 2357-2366.	1.3	5
115	Effect of ultraviolet light emitting diode treatments on microbial load, phenolic and volatile profile of black peppercorns. LWT - Food Science and Technology, 2021, 152, 112133.	2.5	5
116	Aroma compounds of non-alcoholic fermented beverage: Gilaburu juice. The EuroBiotech Journal, 2017, 1, 226-229.	0.5	5
117	Volatile and key odourant compounds of Turkish <i>Berberis crataegina</i> fruit using GC-MS-Olfactometry. Natural Product Research, 2018, 32, 777-781.	1.0	4
118	Characterization of aromaâ€active compounds and stable carbon isotope ratios in Turkish pine honeys from two different regions. Journal of Food Processing and Preservation, 2020, 45, e14544.	0.9	4
119	FACTORS AFFECTING ON THE RELEASE OF AROMA COMPOUNDS. Gıda, 2020, 45, 204-216.	0.1	4
120	Elucidation of key aroma enhancement in cloudy lemon juices by the addition of peel oil using <scp>GC–MSâ€Olfactometry</scp> . International Journal of Food Science and Technology, 2022, 57, 5280-5288.	1.3	4
121	Identification of aroma compounds of Vibirnum opulus L. juice using the purge and trap technique. Journal of Biotechnology, 2017, 256, S26.	1.9	3
122	Characterization of Key Odorants in Moroccan Argan Oil by Aroma Extract Dilution Analysis. European Journal of Lipid Science and Technology, 2019, 121, 1800437.	1.0	3
123	Comparison of phenolic profile and some physicochemical properties of Uzun pistachios as influenced by different harvest period. Journal of Food Processing and Preservation, 2020, 44, .	0.9	3
124	Effect of drought stress induced by PEG 6000 on <i>OcimumÂbasilicum</i> L. aroma profile. Journal of Food Processing and Preservation, 2022, 46, e15948.	0.9	3
125	LC-MS/MS fingerprint and simultaneous quantification of bioactive compounds in safflower petals (Carthamus tinctorius L.). Microchemical Journal, 2021, 171, 106850.	2.3	3
126	Biochemistry, antioxidant, and antimicrobial properties of hazelnut (Corylus avellana L.) oil. , 2022, , 397-412.		3

#	Article	IF	CITATIONS
127	Comparison of aroma, aromaâ€active, and phenolic compounds of crude and refined hazelnut oils. JAOCS, Journal of the American Oil Chemists' Society, 2022, 99, 265-275.	0.8	3
128	Comparative evaluation of seed size and growing regions on the chemical compositions of raw and roasted NCâ€7 peanut cultivars. Journal of Food Processing and Preservation, 2022, 46, e15817.	0.9	2
129	LCâ€DADâ€ESIâ€MS/MS characterization of phenolic compounds in wines from <i>Vitis vinifera</i> â€~ <i>Shesh i bardhë</i> ' and â€~ <i>Vlosh</i> ' cultivars. Journal of Food Processing and Preservation, 2022, 46, .	0.9	2
130	Characterization of Berry Aromatic Profile of cv. Trebbiano Romagnolo Grapes and Effects of Intercropping with Salvia officinalis L. Agronomy, 2022, 12, 344.	1.3	2
131	Potent odorants and sensory characteristics of the soft white cheese "Jben†Effect of salt content. Flavour and Fragrance Journal, 0, , .	1.2	2
132	GLC/HPLC Methods for Saffron (Crocus sativus L.). Reference Series in Phytochemistry, 2018, , 1-49.	0.2	1
133	Fermentative aroma in wines from Vitis vinifera cv. Kalecik karasi in relation with inoculation with selected dry yeasts. Oeno One, 2016, 37, 155.	0.7	1
134	Evidence-Based Medicinal Plants for Modern Chronic Diseases. Evidence-based Complementary and Alternative Medicine, 2014, 2014, 1-1.	0.5	0
135	Olive Oil Production in Albania, Chemical Characterization, and Authenticity. , 0, , .		0
136	Elucidation of Retroâ€and Orthonasal Aroma Differences of Biscuits (panis biscoctus) Using Artificial Masticator. Journal of Food Processing and Preservation, 0, , e16088.	0.9	0
137	The international conference on raw materials to processed foods editorial. Journal of Food Processing and Preservation, 0, , .	0.9	0
138	THE IMPACT OF OPEN-FIELD AND PROTECTED CULTIVATION ON BIOCHEMICAL CHARACTERISTICS OF BANANAS (Musa spp. AAA). Acta Scientiarum Polonorum, Hortorum Cultus, 2022, 21, 15-24.	0.3	0