Li Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/739586/publications.pdf

Version: 2024-02-01

		71097	58576
98	7,029 citations	41	82
papers	citations	h-index	g-index
98	98	98	10404
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Engineering lattice defects in 2D nanomaterials for enhancing biomedical performances. Particuology, 2022, 64, 121-133.	3.6	7
2	Dynamic nano-assemblies based on two-dimensional inorganic nanoparticles: Construction and preclinical demonstration. Advanced Drug Delivery Reviews, 2022, 180, 114031.	13.7	14
3	Nanoclay-based sensor composites for the facile detection of molecular antioxidants. Analyst, The, 2022, 147, 1367-1374.	3.5	6
4	Tailoring functional nanoparticles for oral vaccine delivery: Recent advances and future perspectives. Composites Part B: Engineering, 2022, 236, 109826.	12.0	22
5	MnO2-shelled Doxorubicin/Curcumin nanoformulation for enhanced colorectal cancer chemo-immunotherapy. Journal of Colloid and Interface Science, 2022, 617, 315-325.	9.4	12
6	Development of CaP nanocomposites as photothermal actuators for doxorubicin delivery to enhance breast cancer treatment. Journal of Materials Science and Technology, 2021, 63, 73-80.	10.7	11
7	Creating Structural Defects of Drugâ€Free Copperâ€Containing Layered Double Hydroxide Nanoparticles to Synergize Photothermal/Photodynamic/Chemodynamic Cancer Therapy. Small Structures, 2021, 2, 2000112.	12.0	54
8	Synergistic Cancer Photochemotherapy via Layered Double Hydroxide-Based Trimodal Nanomedicine at Very Low Therapeutic Doses. ACS Applied Materials & Samp; Interfaces, 2021, 13, 7115-7126.	8.0	61
9	Calcium-bisphosphonate Nanoparticle Platform as a Prolonged Nanodrug and Bone-Targeted Delivery System for Bone Diseases and Cancers. ACS Applied Bio Materials, 2021, 4, 2490-2501.	4.6	7
10	Synergistic Inhibition of Drug-Resistant Colon Cancer Growth with PI3K/mTOR Dual Inhibitor BEZ235 and Nano-Emulsioned Paclitaxel via Reducing Multidrug Resistance and Promoting Apoptosis. International Journal of Nanomedicine, 2021, Volume 16, 2173-2186.	6.7	24
11	Chitosan Nanomedicine in Cancer Therapy: Targeted Delivery and Cellular Uptake. Macromolecular Bioscience, 2021, 21, e2100005.	4.1	24
12	Nanoparticles as potential external markers for mark–release–recapture studies on Tribolium castaneum. Entomologia Experimentalis Et Applicata, 2021, 169, 575-581.	1.4	4
13	Albumin-stabilized layered double hydroxide nanoparticles synergized combination chemotherapy for colorectal cancer treatment. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 34, 102369.	3.3	21
14	Immunostimulatory photochemotherapeutic nanocapsule for enhanced colon cancer treatment. Nanophotonics, 2021, 10, 3321-3337.	6.0	6
15	Enhanced Mucosal Transport of Polysaccharide–Calcium Phosphate Nanocomposites for Oral Vaccination. ACS Applied Bio Materials, 2021, 4, 7865-7878.	4.6	9
16	Biomimetic 2D layered double hydroxide nanocomposites for hyperthermia-facilitated homologous targeting cancer photo-chemotherapy. Journal of Nanobiotechnology, 2021, 19, 351.	9.1	12
17	Efficient antimicrobial properties of layered double hydroxide assembled with transition metals via a facile preparation method. Chinese Chemical Letters, 2020, 31, 1511-1515.	9.0	28
18	2D Layered Double Hydroxide Nanoparticles: Recent Progress toward Preclinical/Clinical Nanomedicine. Small Methods, 2020, 4, 1900343.	8.6	100

#	Article	IF	CITATIONS
19	Boosting the performance of hybrid supercapacitors through redox electrolyte-mediated capacity balancing. Nano Energy, 2020, 68, 104226.	16.0	48
20	Recent advances in heparinization of polymeric membranes for enhanced continuous blood purification. Journal of Materials Chemistry B, 2020, 8, 878-894.	5.8	18
21	Nanoclay-induced bacterial flocculation for infection confinement. Journal of Colloid and Interface Science, 2020, 562, 71-80.	9.4	3
22	Enhanced Oral Vaccine Efficacy of Polysaccharide-Coated Calcium Phosphate Nanoparticles. ACS Omega, 2020, 5, 18185-18197.	3 . 5	35
23	Human Platelet Lysate Supports Mouse Skeletal Myoblast Growth but Suppresses Cell Fusion on Nanogrooves. ACS Applied Bio Materials, 2020, 3, 3594-3604.	4.6	1
24	Transition metal based battery-type electrodes in hybrid supercapacitors: A review. Energy Storage Materials, 2020, 28, 122-145.	18.0	413
25	Charge Reversion Simultaneously Enhances Tumor Accumulation and Cell Uptake of Layered Double Hydroxide Nanohybrids for Effective Imaging and Therapy. Small, 2020, 16, e2002115.	10.0	49
26	Tat-Based Therapies as an Adjuvant for an HIV-1 Functional Cure. Viruses, 2020, 12, 415.	3.3	18
27	Alginate-chitosan coated layered double hydroxide nanocomposites for enhanced oral vaccine delivery. Journal of Colloid and Interface Science, 2019, 556, 258-265.	9.4	82
28	Integrating Fluorinated Polymer and Manganeseâ€Layered Double Hydroxide Nanoparticles as pHâ€activated ¹⁹ F MRI Agents for Specific and Sensitive Detection of Breast Cancer. Small, 2019, 15, e1902309.	10.0	49
29	Indoor CO ₂ Control through Mesoporous Amine-Functionalized Silica Monoliths. Industrial & Engineering Chemistry Research, 2019, 58, 19465-19474.	3.7	20
30	Investigating the Use of Layered Double Hydroxide Nanoparticles as Carriers of Metal Oxides for Theranostics of ROS-Related Diseases. ACS Applied Bio Materials, 2019, 2, 5930-5940.	4.6	38
31	Enhancing PD-1 Gene Silence in T Lymphocytes by Comparing the Delivery Performance of Two Inorganic Nanoparticle Platforms. Nanomaterials, 2019, 9, 159.	4.1	31
32	Expanded graphite/NiAl layered double hydroxide nanowires for ultra-sensitive, ultra-low detection limits and selective NO _x gas detection at room temperature. RSC Advances, 2019, 9, 8768-8777.	3.6	19
33	Modifying layered double hydroxide nanoparticles for tumor imaging and therapy. Clays and Clay Minerals, 2019, 67, 72-80.	1.3	12
34	Self-Nanoemulsifying Drug-Delivery System and Solidified Self-Nanoemulsifying Drug-Delivery System. , 2019, , 421-449.		15
35	Responsive Upconversion Nanoprobe for Backgroundâ€Free Hypochlorous Acid Detection and Bioimaging. Small, 2019, 15, e1803712.	10.0	59
36	Paclitaxel increases the sensitivity of lung cancer cells to lobaplatin via PI3K/Akt pathway. Oncology Letters, 2018, 15, 6211-6216.	1.8	7

#	Article	IF	Citations
37	Formulation, characterisation and antibacterial activity of lemon myrtle and anise myrtle essential oil in water nanoemulsion. Food Chemistry, 2018, 254, 1-7.	8.2	83
38	Recent progress in upconversion luminescence nanomaterials for biomedical applications. Journal of Materials Chemistry B, 2018, 6, 192-209.	5.8	192
39	Structural Directed Growth of Ultrathin Parallel Birnessite on \hat{l}^2 -MnO ₂ for High-Performance Asymmetric Supercapacitors. ACS Nano, 2018, 12, 1033-1042.	14.6	436
40	Mannose-conjugated layered double hydroxide nanocomposite for targeted siRNA delivery to enhance cancer therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2355-2364.	3.3	52
41	The Pathways for Layered Double Hydroxide Nanoparticles to Enhance Antigen (Cross)-Presentation on Immune Cells as Adjuvants for Protein Vaccines. Frontiers in Pharmacology, 2018, 9, 1060.	3.5	24
42	Brain Targeting Delivery Facilitated by Ligand-Functionalized Layered Double Hydroxide Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2018, 10, 20326-20333.	8.0	45
43	Manipulating extracellular tumour pH: an effective target for cancer therapy. RSC Advances, 2018, 8, 22182-22192.	3.6	219
44	X-ray fluorescence imaging of metals and metalloids in biological systems. American Journal of Nuclear Medicine and Molecular Imaging, 2018, 8, 169-188.	1.0	13
45	Controlling mesoporous silica-coating of layered double hydroxide nanoparticles for drug control release. Microporous and Mesoporous Materials, 2017, 238, 97-104.	4.4	18
46	Cleaner hydrothermal hydrogenolysis of glycerol to 1,2-propanediol over Cu/oxide catalysts without addition of external hydrogen. Molecular Catalysis, 2017, 432, 274-284.	2.0	37
47	Roles of texture and acidity of acid-activated sepiolite catalysts in gas-phase catalytic dehydration of glycerol to acrolein. Molecular Catalysis, 2017, 434, 219-231.	2.0	36
48	Photocatalytic Cr(VI) reduction by mixed metal oxide derived from ZnAl layered double hydroxide. Applied Clay Science, 2017, 143, 168-174.	5.2	51
49	Remarkable supercapacitor performance of petal-like LDHs vertically grown on graphene/polypyrrole nanoflakes. Journal of Materials Chemistry A, 2017, 5, 8964-8971.	10.3	53
50	Nanoformulations of albendazole as effective anticancer and antiparasite agents. Nanomedicine, 2017, 12, 2555-2574.	3.3	19
51	Electrostatic Self-Assembly of Sandwich-Like CoAl-LDH/Polypyrrole/Graphene Nanocomposites with Enhanced Capacitive Performance. ACS Applied Materials & Interfaces, 2017, 9, 31699-31709.	8.0	103
52	Experimental and Computational Investigation of the Optical, Electronic, and Electrochemical Properties of Hydrogenated α-Fe ₂ O ₃ . Journal of Physical Chemistry C, 2017, 121, 16059-16065.	3.1	11
53	ZnO-Layered Double Hydroxide@Graphitic Carbon Nitride Composite for Consecutive Adsorption and Photodegradation of Dyes under UV and Visible Lights. Materials, 2016, 9, 927.	2.9	46
54	Synergistic inhibition of colon cancer cell growth with nanoemulsion-loaded paclitaxel and PI3K/mTOR dual inhibitor BEZ235 through apoptosis. International Journal of Nanomedicine, 2016, 11, 1947.	6.7	28

#	Article	IF	CITATIONS
55	Fe-assisted Ru clusters supported on porous and graphitic carbon for ammonia decomposition to CO _x free hydrogen. RSC Advances, 2016, 6, 102336-102342.	3.6	8
56	Sandwich-like graphene/polypyrrole/layered double hydroxide nanowires for high-performance supercapacitors. Journal of Power Sources, 2016, 331, 67-75.	7.8	62
57	Direct synthesis of layered double hydroxide nanosheets for efficient siRNA delivery. RSC Advances, 2016, 6, 95518-95526.	3.6	21
58	Physiologically Based Pharmacokinetic Model for Long-Circulating Inorganic Nanoparticles. Nano Letters, 2016, 16, 939-945.	9.1	42
59	Efficient drug delivery using SiO 2 -layered double hydroxide nanocomposites. Journal of Colloid and Interface Science, 2016, 470, 47-55.	9.4	66
60	Aggregation of layered double hydroxide nanoparticles in the presence of heparin: towards highly stable delivery systems. RSC Advances, 2016, 6, 16159-16167.	3.6	34
61	Uptake and degradation of Orange II by zinc aluminum layered double oxides. Journal of Colloid and Interface Science, 2016, 469, 224-230.	9.4	31
62	Chlorine-Induced In Situ Regulation to Synthesize Graphene Frameworks with Large Specific Area for Excellent Supercapacitor Performance. ACS Applied Materials & Samp; Interfaces, 2016, 8, 6481-6487.	8.0	29
63	Amine-functionalized SiO2 nanodot-coated layered double hydroxide nanocomposites for enhanced gene delivery. Nano Research, 2015, 8, 682-694.	10.4	79
64	Preparation of optimized lipid-coated calcium phosphate nanoparticles for enhanced in vitro gene delivery to breast cancer cells. Journal of Materials Chemistry B, 2015, 3, 6805-6812.	5.8	77
65	Pre-coating layered double hydroxide nanoparticles with albumin to improve colloidal stability and cellular uptake. Journal of Materials Chemistry B, 2015, 3, 3331-3339.	5.8	109
66	Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities. Applied Catalysis B: Environmental, 2015, 163, 135-142.	20.2	487
67	Effective inhibition of colon cancer cell growth with MgAl-layered double hydroxide (LDH) loaded 5-FU and PI3K/mTOR dual inhibitor BEZ-235 through apoptotic pathways. International Journal of Nanomedicine, 2014, 9, 3403.	6.7	26
68	Influence of Hydrothermal Treatment on Physicochemical Properties and Drug Release of Anti-Inflammatory Drugs of Intercalated Layered Double Hydroxide Nanoparticles. Pharmaceutics, 2014, 6, 235-248.	4.5	29
69	Potential foliar fertilizers with copper and zinc dual micronutrients in nanocrystal suspension. Journal of Nanoparticle Research, 2014, 16 , 1 .	1.9	5
70	Co-delivery of siRNAs and anti-cancer drugs using layered double hydroxide nanoparticles. Biomaterials, 2014, 35, 3331-3339.	11.4	263
71	Efficient Selective Catalytic Reduction of NO by Novel Carbon-doped Metal Catalysts Made from Electroplating Sludge. Environmental Science & Electroplating Sludge. Environmental Science & Electroplating Sludge.	10.0	53
72	Quick and efficient co-treatment of Zn2+/Ni2+ and CNâ^' via the formation of Ni(CN)42â^' intercalated larger ZnAl-LDH crystals. Journal of Hazardous Materials, 2014, 279, 141-147.	12.4	11

#	Article	IF	CITATIONS
73	Selective catalytic oxidation of H2S over iron oxide supported on alumina-intercalated Laponite clay catalysts. Journal of Hazardous Materials, 2013, 260, 104-111.	12.4	84
74	Cancer cell-specific photoactivity of pheophorbide a–glycol chitosan nanoparticles for photodynamic therapy in tumor-bearing mice. Biomaterials, 2013, 34, 6454-6463.	11.4	114
75	High capacitance electrode materials based on layered double hydroxides prepared by non-aqueous precipitation. Applied Clay Science, 2013, 74, 102-108.	5.2	19
76	Catalytic ammonia decomposition for CO-free hydrogen generation over Ru/Cr2O3 catalysts. Applied Catalysis A: General, 2013, 467, 246-252.	4.3	41
77	Stabilization of NaZn(BH ₄) ₃ via nanoconfinement in SBA-15 towards enhanced hydrogen release. Journal of Materials Chemistry A, 2013, 1, 250-257.	10.3	34
78	Transformation of alunite residuals into layered double hydroxides and oxides for adsorption of acid red G dye. Applied Clay Science, 2012, 70, 1-7.	5 . 2	50
79	Functional Nanoporous Graphene Foams with Controlled Pore Sizes. Advanced Materials, 2012, 24, 4419-4423.	21.0	350
80	First Principle Study of Hydrogenation of MgB ₂ : An Important Step Toward Reversible Hydrogen Storage in the Coupled LiBH ₄ /MgH ₂ System. Journal of Nanoscience and Nanotechnology, 2009, 9, 4388-4391.	0.9	9
81	Lithiumâ€Catalyzed Dehydrogenation of Ammonia Borane within Mesoporous Carbon Framework for Chemical Hydrogen Storage. Advanced Functional Materials, 2009, 19, 265-271.	14.9	156
82	CNTs/mesostructured silica core-shell nanowires via interfacial surfactant templating. Science Bulletin, 2009, 54, 516-520.	9.0	4
83	Chromium oxide catalysts for COx-free hydrogen generation via catalytic ammonia decomposition. Journal of Molecular Catalysis A, 2009, 304, 71-76.	4.8	34
84	Effects of pre-treatment in air microwave plasma on the structure of CNTs and the activity of Ru/CNTs catalysts for ammonia decomposition. Catalysis Today, 2009, 148, 97-102.	4.4	35
85	Phosphate removal from wastewater using red mud. Journal of Hazardous Materials, 2008, 158, 35-42.	12.4	380
86	Catalytic decomposition of ammonia over fly ash supported Ru catalysts. Fuel Processing Technology, 2008, 89, 1106-1112.	7.2	27
87	Synthesis and characterization of chromium oxide nanocrystals via solid thermal decomposition at low temperature. Microporous and Mesoporous Materials, 2008, 112, 621-626.	4.4	30
88	Computational study of methyl derivatives of ammonia borane for hydrogen storage. Physical Chemistry Chemical Physics, 2008, 10, 6104.	2.8	12
89	The role of V2O5 on the dehydrogenation and hydrogenation in magnesium hydride: An <i>ab initio</i> study. Applied Physics Letters, 2008, 92, .	3.3	27
90	Catalytic Ammonia Decomposition over Industrial-Waste-Supported Ru Catalysts. Environmental Science &	10.0	58

#	Article	IF	CITATION
91	Catalytic ammonia decomposition over CMK-3 supported Ru catalysts: Effects of surface treatments of supports. Carbon, 2007, 45, 11-20.	10.3	66
92	Catalytic ammonia decomposition over Ru/carbon catalysts: The importance of the structure of carbon support. Applied Catalysis A: General, 2007, 320, 166-172.	4.3	182
93	Localization of Iron in Arabidopsis Seed Requires the Vacuolar Membrane Transporter VIT1. Science, 2006, 314, 1295-1298.	12.6	614
94	Synthesis and Structure Characterization of Chromium Oxide Prepared by Solid Thermal Decomposition Reaction. Journal of Physical Chemistry B, 2006, 110, 178-183.	2.6	92
95	Coal ash conversion into effective adsorbents for removal of heavy metals and dyes from wastewater. Journal of Hazardous Materials, 2006, 133, 243-251.	12.4	191
96	Synthesis and characterization of turbostratic carbons prepared by catalytic chemical vapour decomposition of acetylene. Applied Catalysis A: General, 2006, 309, 201-209.	4.3	14
97	Synthesis and characterization of intercalated mesostructured PANI/V2O5. Studies in Surface Science and Catalysis, 2005, 156, 523-528.	1.5	4
98	Investigation on modification of Ru/CNTs catalyst for the generation of COx-free hydrogen from ammonia. Applied Catalysis B: Environmental, 2004, 52, 287-299.	20.2	165