Muhammad R Niazi

List of Publications by Citations

Source: https://exaly.com/author-pdf/7395633/muhammad-r-niazi-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

1,660 18 33 37 g-index h-index citations papers 12.2 1,933 4.53 37 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
33	Molecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors. <i>Journal of the American Chemical Society</i> , 2016 , 138, 10252-9	16.4	189
32	Solution-printed organic semiconductor blends exhibiting transport properties on par with single crystals. <i>Nature Communications</i> , 2015 , 6, 8598	17.4	188
31	Single crystal hybrid perovskite field-effect transistors. <i>Nature Communications</i> , 2018 , 9, 5354	17.4	177
30	N-type organic electrochemical transistors with stability in water. <i>Nature Communications</i> , 2016 , 7, 130	6 6 7.4	170
29	Blade-Coated Hybrid Perovskite Solar Cells with Efficiency > 17%: An In Situ Investigation. <i>ACS Energy Letters</i> , 2018 , 3, 1078-1085	20.1	132
28	A thieno[3,2-b][1]benzothiophene isoindigo building block for additive- and annealing-free high-performance polymer solar cells. <i>Advanced Materials</i> , 2015 , 27, 4702-7	24	113
27	Vertical Phase Separation in Small Molecule:Polymer Blend Organic Thin Film Transistors Can Be Dynamically Controlled. <i>Advanced Functional Materials</i> , 2016 , 26, 1737-1746	15.6	85
26	Crossover from band-like to thermally activated charge transport in organic transistors due to strain-induced traps. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E6739-E6748	11.5	62
25	Contact-Induced Nucleation in High-Performance Bottom-Contact Organic Thin Film Transistors Manufactured by Large-Area Compatible Solution Processing. <i>Advanced Functional Materials</i> , 2016 , 26, 2371-2378	15.6	60
24	In situ UV-visible absorption during spin-coating of organic semiconductors: a new probe for organic electronics and photovoltaics. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 3373	7.1	59
23	Overcoming the Ambient Manufacturability-Scalability-Performance Bottleneck in Colloidal Quantum Dot Photovoltaics. <i>Advanced Materials</i> , 2018 , 30, e1801661	24	58
22	The Impact of Molecular p-Doping on Charge Transport in High-Mobility Small-Molecule/Polymer Blend Organic Transistors. <i>Advanced Electronic Materials</i> , 2018 , 4, 1700464	6.4	52
21	Late stage crystallization and healing during spin-coating enhance carrier transport in small-molecule organic semiconductors. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 5681-5689	7.1	51
20	Addition of the Lewis Acid Zn(C F) Enables Organic Transistors with a Maximum Hole Mobility in Excess of 20 cm V s. <i>Advanced Materials</i> , 2019 , 31, e1900871	24	48
19	Conducting and Stretchable PEDOT:PSS Electrodes: Role of Additives on Self-Assembly, Morphology, and Transport. <i>ACS Applied Materials & District Research</i> , 11, 17570-17582	9.5	41
18	Impact of the Gate Dielectric on Contact Resistance in High-Mobility Organic Transistors. <i>Advanced Electronic Materials</i> , 2019 , 5, 1800723	6.4	31
17	Strong Enhancement of Electron Donor/Acceptor Ability by Complementary DD/AA Hydrogen Bonding. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 17312-17321	16.4	31

LIST OF PUBLICATIONS

16	Programmable and coherent crystallization of semiconductors. <i>Science Advances</i> , 2017 , 3, e1602462	14.3	27
15	Impact of p-type doping on charge transport in blade-coated small-molecule:polymer blend transistors. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 15368-15376	7.1	14
14	Laser-Printed Organic Thin-Film Transistors. Advanced Materials Technologies, 2017, 2, 1700167	6.8	12
13	Bistetracene Thin Film Polymorphic Control to Unravel the Effect of Molecular Packing on Charge Transport. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1701607	4.6	10
12	A macrocyclic oligofuran: synthesis, solid state structure and electronic properties. <i>Chemical Science</i> , 2019 , 10, 8527-8532	9.4	9
11	Strong Enhancement of Electron Donor/Acceptor Ability by Complementary DD/AA Hydrogen Bonding. <i>Angewandte Chemie</i> , 2019 , 131, 17473-17482	3.6	9
10	Nitroaromatics as n-type organic semiconductors for field effect transistors. <i>Chemical Communications</i> , 2020 , 56, 6432-6435	5.8	7
9	Mechanism of the Photodegradation of A-D-A Acceptors for Organic Photovoltaics*. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 24833-24837	16.4	6
8	Controlling Structural and Energetic Disorder in High-Mobility Polymer Semiconductors via Doping with Nitroaromatics. <i>Chemistry of Materials</i> , 2021 , 33, 2937-2947	9.6	5
7	Star-shaped triarylamine-based hole-transport materials in perovskite solar cells. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 779-787	5.8	4
6	Systematic Study on the Morphological Development of Blade-Coated Conjugated Polymer Thin Films via In Situ Measurements. <i>ACS Applied Materials & Development State Sta</i>	9.5	3
5	Solar Cells: Overcoming the Ambient Manufacturability-Scalability-Performance Bottleneck in Colloidal Quantum Dot Photovoltaics (Adv. Mater. 35/2018). <i>Advanced Materials</i> , 2018 , 30, 1870260	24	3
4	Conjugated polymers with controllable interfacial order and energetics enable tunable heterojunctions in organic and colloidal quantum dot photovoltaics. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 1788-1801	13	2
3	A Universal Cosolvent Evaporation Strategy Enables Direct Printing of Perovskite Single Crystals for Optoelectronic Device Applications <i>Advanced Materials</i> , 2022 , e2109862	24	1
2	Thin Film Transistors: Contact-Induced Nucleation in High-Performance Bottom-Contact Organic Thin Film Transistors Manufactured by Large-Area Compatible Solution Processing (Adv. Funct. Mater. 14/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 2396-2396	15.6	1
1	Solvent Vapor Annealing: Bistetracene Thin Film Polymorphic Control to Unravel the Effect of Molecular Packing on Charge Transport (Adv. Mater. Interfaces 9/2018). <i>Advanced Materials Interfaces</i> . 2018 . 5, 1870040	4.6	