Atsuo Ogura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7394719/publications.pdf

Version: 2024-02-01

280 papers 17,983 citations

65 h-index 124 g-index

285 all docs

285 docs citations

times ranked

285

13446 citing authors

#	Article	IF	CITATIONS
1	Long-Term Proliferation in Culture and Germline Transmission of Mouse Male Germline Stem Cells1. Biology of Reproduction, 2003, 69, 612-616.	2.7	922
2	Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. BioTechniques, 2009, 46, 167-172.	1.8	820
3	Generation of Pluripotent Stem Cells from Neonatal Mouse Testis. Cell, 2004, 119, 1001-1012.	28.9	766
4	In vitro production of functional sperm in cultured neonatal mouse testes. Nature, 2011, 471, 504-507.	27.8	630
5	Requirement of CD9 on the Egg Plasma Membrane for Fertilization. Science, 2000, 287, 321-324.	12.6	624
6	PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature, 2012, 486, 415-419.	27.8	397
7	Inter-mitochondrial complementation: Mitochondria-specific system preventing mice from expression of disease phenotypes by mutant mtDNA. Nature Medicine, 2001, 7, 934-940.	30.7	380
8	Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nature Genetics, 2006, 38, 101-106.	21.4	376
9	Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes. Nature Genetics, 2000, 26, 176-181.	21.4	366
10	Long-Term Culture of Mouse Male Germline Stem Cells Under Serum-or Feeder-Free Conditions 1. Biology of Reproduction, 2005, 72, 985-991.	2.7	309
11	Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development (Cambridge), 2002, 129, 1807-1817.	2.5	305
12	Role of retrotransposon-derived imprinted gene, Rtl1, in the feto-maternal interface of mouse placenta. Nature Genetics, 2008, 40, 243-248.	21.4	300
13	Faithful Expression of Imprinted Genes in Cloned Mice. Science, 2002, 295, 297-297.	12.6	253
14	Early death of mice cloned from somatic cells. Nature Genetics, 2002, 30, 253-254.	21.4	248
15	Cloning of mice to six generations. Nature, 2000, 407, 318-319.	27.8	242
16	Akt mediates self-renewal division of mouse spermatogonial stem cells. Development (Cambridge), 2007, 134, 1853-1859.	2.5	234
17	Production of Male Cloned Mice from Fresh, Cultured, and Cryopreserved Immature Sertoli Cells1. Biology of Reproduction, 2000, 62, 1579-1584.	2.7	228
18	Impeding <i>Xist</i> Expression from the Active X Chromosome Improves Mouse Somatic Cell Nuclear Transfer. Science, 2010, 330, 496-499.	12.6	224

#	Article	IF	CITATIONS
19	Epigenetic Regulation of Mouse Sex Determination by the Histone Demethylase Jmjd1a. Science, 2013, 341, 1106-1109.	12.6	217
20	Genetic and epigenetic properties of mouse male germline stem cells during long-term culture. Development (Cambridge), 2005, 132, 4155-4163.	2.5	210
21	In vitro production of fertile sperm from murine spermatogonial stem cell lines. Nature Communications, 2011, 2, 472.	12.8	198
22	Recent advancements in cloning by somatic cell nuclear transfer. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20110329.	4.0	179
23	Round Spermatid Nuclei Injected into Hamster Oocytes form Pronuclei and Participate in Syngamy1. Biology of Reproduction, 1993, 48, 219-225.	2.7	170
24	Pluripotency of a Single Spermatogonial Stem Cell in Mice1. Biology of Reproduction, 2008, 78, 681-687.	2.7	170
25	Generation of Induced Pluripotent Stem Cells in Rabbits. Journal of Biological Chemistry, 2010, 285, 31362-31369.	3.4	153
26	Production of knockout mice by random or targeted mutagenesis in spermatogonial stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8018-8023.	7.1	151
27	Long-term ex vivo maintenance of testis tissues producing fertile sperm in a microfluidic device. Scientific Reports, 2016, 6, 21472.	3.3	147
28	Generation of Cloned Mice by Direct Nuclear Transfer from Natural Killer T Cells. Current Biology, 2005, 15, 1114-1118.	3.9	142
29	RNAi-mediated knockdown of <i>Xist</i> can rescue the impaired postimplantation development of cloned mouse embryos. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20621-20626.	7.1	142
30	Functional Differences between GDNF-Dependent and FGF2-Dependent Mouse Spermatogonial Stem Cell Self-Renewal. Stem Cell Reports, 2015, 4, 489-502.	4.8	142
31	Offspring production with sperm grown in vitro from cryopreserved testis tissues. Nature Communications, 2014, 5, 4320.	12.8	139
32	Selective and Continuous Elimination of Mitochondria Microinjected Into Mouse Eggs From Spermatids, but Not From Liver Cells, Occurs Throughout Embryogenesis. Genetics, 2000, 156, 1277-1284.	2.9	135
33	Histone Variants Enriched in Oocytes Enhance Reprogramming to Induced Pluripotent Stem Cells. Cell Stem Cell, 2014, 14, 217-227.	11.1	130
34	Effects of Donor Cell Type and Genotype on the Efficiency of Mouse Somatic Cell Cloning. Biology of Reproduction, 2003, 69, 1394-1400.	2.7	127
35	Oligo-astheno-teratozoospermia in mice lacking Cnot7, a regulator of retinoid X receptor beta. Nature Genetics, 2004, 36, 528-533.	21.4	127
36	Birth of mice after nuclear transfer by electrofusion using tail tip cells. Molecular Reproduction and Development, 2000, 57, 55-59.	2.0	126

#	Article	IF	Citations
37	Isolation, characterization, and <i>in vitro </i> i>and <i>in vivo </i> ii>differentiation of putative thecal stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12389-12394.	7.1	122
38	Regulation of Spermatogenesis by Testis-Specific, Cytoplasmic Poly(A) Polymerase TPAP. Science, 2002, 298, 1999-2002.	12.6	119
39	Spermatogenesis from epiblast and primordial germ cells following transplantation into postnatal mouse testis. Development (Cambridge), 2005, 132, 117-122.	2.5	119
40	Serum- and Feeder-Free Culture of Mouse Germline Stem Cells1. Biology of Reproduction, 2011, 84, 97-105.	2.7	115
41	Restoration of spermatogenesis by lentiviral gene transfer: Offspring from infertile mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7524-7529.	7.1	109
42	Allogeneic Offspring Produced by Male Germ Line Stem Cell Transplantation into Infertile Mouse Testis1. Biology of Reproduction, 2003, 68, 167-173.	2.7	109
43	Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development (Cambridge), 2002, 129, 1807-17.	2.5	106
44	Loss of H3K27me3 Imprinting in Somatic Cell Nuclear Transfer Embryos Disrupts Post-Implantation Development. Cell Stem Cell, 2018, 23, 343-354.e5.	11.1	105
45	Inefficient reprogramming of the hematopoietic stem cell genome following nuclear transfer. Journal of Cell Science, 2006, 119, 1985-1991.	2.0	104
46	Reconstitution of Mouse Spermatogonial Stem Cell Niches in Culture. Cell Stem Cell, 2012, 11, 567-578.	11.1	104
47	Production of cloned mice by somatic cellnuclear transfer. Nature Protocols, 2006, 1, 125-138.	12.0	103
48	MousePeg9/Dlk1and humanPEG9/DLK1are paternally expressed imprinted genes closely located to the maternally expressed imprinted genes: mouseMeg3/Gtl2and humanMEG3. Genes To Cells, 2000, 5, 1029-1037.	1.2	102
49			
	Clonal Origin of Germ Cell Colonies after Spermatogonial Transplantation in Mice1. Biology of Reproduction, 2006, 75, 68-74.	2.7	99
50		2.7	99
50	Reproduction, 2006, 75, 68-74. CDKL5 controls postsynaptic localization of GluN2B-containing NMDA receptors in the hippocampus		
	Reproduction, 2006, 75, 68-74. CDKL5 controls postsynaptic localization of GluN2B-containing NMDA receptors in the hippocampus and regulates seizure susceptibility. Neurobiology of Disease, 2017, 106, 158-170. Beta-galactosidase-deficient mouse as an animal model for GM1-gangliosidosis. Glycoconjugate	4.4	92
51	Reproduction, 2006, 75, 68-74. CDKL5 controls postsynaptic localization of GluN2B-containing NMDA receptors in the hippocampus and regulates seizure susceptibility. Neurobiology of Disease, 2017, 106, 158-170. Beta-galactosidase-deficient mouse as an animal model for GM1-gangliosidosis. Glycoconjugate Journal, 1997, 14, 729-736. Spermatozoa and spermatids retrieved from frozen reproductive organs or frozen whole bodies of male mice can produce normal offspring. Proceedings of the National Academy of Sciences of the	4.4 2.7	92 91

#	Article	IF	CITATIONS
55	Noninvasive visualization of molecular events in the mammalian zygote. Genesis, 2005, 43, 71-79.	1.6	88
56	Ubiquitin C-Terminal Hydrolase L-1 Is Essential for the Early Apoptotic Wave of Germinal Cells and for Sperm Quality Control During Spermatogenesis1. Biology of Reproduction, 2005, 73, 29-35.	2.7	88
57	Analysis of the Mechanism for Chromatin Remodeling in Embryos Reconstructed by Somatic Nuclear Transfer1. Biology of Reproduction, 2002, 67, 760-766.	2.7	85
58	Centromeric DNA hypomethylation as an epigenetic signature discriminates between germ and somatic cell lineages. Developmental Biology, 2007, 312, 419-426.	2.0	84
59	The <i>Sall3</i> locus is an epigenetic hotspot of aberrant DNA methylation associated with placentomegaly of cloned mice. Genes To Cells, 2004, 9, 253-260.	1.2	80
60	A New, Dynamic Era for Somatic Cell Nuclear Transfer?. Trends in Biotechnology, 2016, 34, 791-797.	9.3	77
61	Mouse oocytes injected with cryopreserved round spermatids can develop into normal offspring. Journal of Assisted Reproduction and Genetics, 1996, 13, 431-434.	2.5	74
62	Adenovirus-mediated gene delivery and in vitro microinsemination produce offspring from infertile male mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1383-1388.	7.1	70
63	BMP4 induction of trophoblast from mouse embryonic stem cells in defined culture conditions on laminin. In Vitro Cellular and Developmental Biology - Animal, 2010, 46, 416-430.	1.5	70
64	Leukemia Inhibitory Factor Enhances Formation of Germ Cell Colonies in Neonatal Mouse Testis Culture 1. Biology of Reproduction, 2007, 76, 55-62.	2.7	69
65	Improved Serum- and Feeder-Free Culture of Mouse Germline Stem Cells1. Biology of Reproduction, 2014, 91, 88.	2.7	69
66	Histone chaperone CAF-1 mediates repressive histone modifications to protect preimplantation mouse embryos from endogenous retrotransposons. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14641-14646.	7.1	68
67	Analysis of CpG islands of trophoblast giant cells by restriction landmark genomic scanning. Genesis, 1998, 22, 132-140.	2.1	66
68	Single-step generation of rabbits carrying a targeted allele of the tyrosinase gene using CRISPR/Cas9. Experimental Animals, 2015, 64, 31-37.	1.1	66
69	Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal. Genes and Development, 2016, 30, 2637-2648.	5.9	66
70	A Simple and Robust Method for Establishing Homogeneous Mouse Epiblast Stem Cell Lines by Wnt Inhibition. Stem Cell Reports, 2015, 4, 744-757.	4.8	65
71	Genome Editing in Mouse Spermatogonial Stem Cell Lines Using TALEN and Double-Nicking CRISPR/Cas9. Stem Cell Reports, 2015, 5, 75-82.	4.8	65
72	A non-mosaic transchromosomic mouse model of Down syndrome carrying the long arm of human chromosome 21. ELife, 2020, 9 , .	6.0	65

#	Article	IF	Citations
73	Reduced fertility of mouse epididymal sperm lacking Prss21/Tesp5 is rescued by sperm exposure to uterine microenvironment. Genes To Cells, 2008, 13, 1001-1013.	1.2	64
74	Acrosin is essential for sperm penetration through the zona pellucida in hamsters. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2513-2518.	7.1	64
75	Basic FGF and Activin/Nodal but not LIF signaling sustain undifferentiated status of rabbit embryonic stem cells. Experimental Cell Research, 2009, 315, 2033-2042.	2.6	63
76	Differential Developmental Ability of Embryos Cloned from Tissue-Specific Stem Cells. Stem Cells, 2007, 25, 1279-1285.	3.2	62
77	Testis tissue explantation cures spermatogenic failure in c-Kit ligand mutant mice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16934-16938.	7.1	61
78	Generation of Functional Oocytes and Spermatids from Fetal Primordial Germ Cells after Ectopic Transplantation in Adult Mice. Biology of Reproduction, 2011, 84, 631-638.	2.7	60
79	Oligoâ€asthenoâ€teratozoospermia in mice lacking <scp>ORP</scp> 4, a sterolâ€binding protein in the OSBPâ€related protein family. Genes To Cells, 2014, 19, 13-27.	1.2	60
80	Adenovirus-mediated gene delivery into mouse spermatogonial stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2596-2601.	7.1	58
81	RNA sequencing-based identification of aberrant imprinting in cloned mice. Human Molecular Genetics, 2014, 23, 992-1001.	2.9	57
82	A heterozygous mutation of <i>GALNTL5</i> affects male infertility with impairment of sperm motility. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1120-1125.	7.1	57
83	High-Yield Superovulation in Adult Mice by Anti-Inhibin Serum Treatment Combined with Estrous Cycle Synchronization1. Biology of Reproduction, 2016, 94, 21.	2.7	56
84	Stable embryonic stem cell lines in rabbits: potential small animal models for human research. Reproductive BioMedicine Online, 2008, 17, 706-715.	2.4	55
85	Regulation of pluripotency in male germline stem cells by Dmrt1. Genes and Development, 2013, 27, 1949-1958.	5.9	54
86	Loss of H3K27me3 imprinting in the Sfmbt2 miRNA cluster causes enlargement of cloned mouse placentas. Nature Communications, 2020, 11, 2150.	12.8	54
87	Do cloned mammals skip a reprogramming step?. Nature Biotechnology, 2004, 22, 25-26.	17.5	53
88	Birth of mice produced by germ cell nuclear transfer. Genesis, 2005, 41, 81-86.	1.6	52
89	Variation in Gene Expression and Aberrantly Regulated Chromosome Regions in Cloned Mice1. Biology of Reproduction, 2005, 73, 1302-1311.	2.7	52
90	Neurological manifestations of knockout mice with \hat{l}^2 -galactosidase deficiency. Brain and Development, 1997, 19, 19-20.	1.1	51

#	Article	IF	Citations
91	Ras Mediates Effector Pathways Responsible for Pre-B Cell Survival, Which Is Essential for the Developmental Progression to the Late Pre-B Cell Stage. Journal of Experimental Medicine, 2000, 192, 171-182.	8.5	49
92	Dynamic rearrangement of telomeres during spermatogenesis in mice. Developmental Biology, 2005, 281, 196-207.	2.0	48
93	Rapid detection of Pseudomonas aeruginosa in mouse feces by colorimetric loop-mediated isothermal amplification. Journal of Microbiological Methods, 2010, 81, 247-252.	1.6	48
94	Complementary Critical Functions of Zfy1 and Zfy2 in Mouse Spermatogenesis and Reproduction. PLoS Genetics, 2017, 13, e1006578.	3.5	47
95	MIWI2 as an Effector of DNA Methylation and Gene Silencing in Embryonic Male Germ Cells. Cell Reports, 2016, 16, 2819-2828.	6.4	46
96	Trichostatin A specifically improves the aberrant expression of transcription factor genes in embryos produced by somatic cell nuclear transfer. Scientific Reports, 2015, 5, 10127.	3.3	45
97	Reprogramming of the histone H3.3 landscape in the early mouse embryo. Nature Structural and Molecular Biology, 2021, 28, 38-49.	8.2	45
98	Anchorage-Independent Growth of Mouse Male Germline Stem Cells In Vitro1. Biology of Reproduction, 2006, 74, 522-529.	2.7	44
99	Biogenesis of sperm acrosome is regulated by pre-mRNA alternative splicing of Acrbp in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3696-E3705.	7.1	44
100	The Rodent-Specific MicroRNA Cluster within the Sfmbt2 Gene Is Imprinted and Essential for Placental Development. Cell Reports, 2017, 19, 949-956.	6.4	44
101	Naive-like Conversion Overcomes the Limited Differentiation Capacity of Induced Pluripotent Stem Cells. Journal of Biological Chemistry, 2013, 288, 26157-26166.	3.4	43
102	A High-Speed Congenic Strategy Using First-Wave Male Germ Cells. PLoS ONE, 2009, 4, e4943.	2.5	42
103	The Mouse Resources at the RIKEN BioResource Center. Experimental Animals, 2009, 58, 85-96.	1.1	42
104	Paternal knockout of <i>Slc38a4</i> /SNAT4 causes placental hypoplasia associated with intrauterine growth restriction in mice. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21047-21053.	7.1	42
105	Heritable Imprinting Defect Caused by Epigenetic Abnormalities in Mouse Spermatogonial Stem Cells1. Biology of Reproduction, 2009, 80, 518-527.	2.7	41
106	Human NK cell development in hIL-7 and hIL-15 knockin NOD/SCID/IL2rgKO mice. Life Science Alliance, 2019, 2, e201800195.	2.8	41
107	Production of knockout mice by gene targeting in multipotent germline stem cells. Developmental Biology, 2007, 312, 344-352.	2.0	40
108	Activity of a Sperm-Borne Oocyte-Activating Factor in Spermatozoa and Spermatogenic Cells from Cynomolgus Monkeys and Its Localization after Oocyte Activation1. Biology of Reproduction, 2001, 65, 351-357.	2.7	39

#	Article	IF	Citations
109	Tissue-specific distribution of donor mitochondrial DNA in cloned mice produced by somatic cell nuclear transfer. Genesis, 2004, 39, 79-83.	1.6	38
110	Decreased Matrix Metalloproteinase Activity in the Kidneys of Hereditary Nephrotic Mice (ICGN) Tj ETQq0 0 0 rgt	BT /Qverlo	ck 10 Tf 50 70
111	Microinsemination and Nuclear Transfer Using Male Germ Cells. International Review of Cytology, 2005, 246, 189-229.	6.2	35
112	Histone H3 Methylated at Arginine 17 Is Essential for Reprogramming the Paternal Genome in Zygotes. Cell Reports, 2017, 20, 2756-2765.	6.4	35
113	Differential development of rabbit embryos following microinsemination with sperm and spermatids. Molecular Reproduction and Development, 2005, 72, 411-417.	2.0	34
114	Resistin-Like Molecule \hat{l}^2 Is Abundantly Expressed in Foam Cells and Is Involved in Atherosclerosis Development. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1986-1993.	2.4	34
115	Induction of DNA Methylation by Artificial piRNA Production in Male Germ Cells. Current Biology, 2015, 25, 901-906.	3.9	34
116	The Novel Dominant Mutation Dspd Leads to a Severe Spermiogenesis Defect in Mice1. Biology of Reproduction, 2004, 70, 1213-1221.	2.7	33
117	Chorioallantoic placenta defects in cloned mice. Biochemical and Biophysical Research Communications, 2006, 349, 106-114.	2.1	33
118	Efficient Production of Offspring from Japanese Wild-Derived Strains of Mice (Mus musculus) Tj ETQq0 0 0 rgBT 1-7.	Overlock 2.7	10 Tf 50 387 33
119	EPC1/TIP60-Mediated Histone Acetylation Facilitates Spermiogenesis in Mice. Molecular and Cellular Biology, 2017, 37, .	2.3	33
120	Transforming growth factor- \hat{l}^21 mediated up-regulation of lysyl oxidase in the kidneys of hereditary nephrotic mouse with chronic renal fibrosis. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2005, 447, 859-868.	2.8	32
121	Development of lysosomal storage in mice with targeted disruption of the \hat{l}^2 -galactosidase gene: a model of human GM1-gangliosidosis. Brain and Development, 2001, 23, 379-384.	1.1	31
122	Paternal Expression of a Novel Imprinted Gene, Peg12/Frat3, in the Mouse 7C Region Homologous to the Prader–Willi Syndrome Region. Biochemical and Biophysical Research Communications, 2002, 290, 403-408.	2.1	31
123	Molecular Identification of t: Vps52 Promotes Pluripotential Cell Differentiation through Cell–Cell Interactions. Cell Reports, 2012, 2, 1363-1374.	6.4	31
124	The Arf GAP SMAP2 is necessary for organized vesicle budding from the trans-Golgi network and subsequent acrosome formation in spermiogenesis. Molecular Biology of the Cell, 2013, 24, 2633-2644.	2.1	31
125	High Osmolality Vitrification: A New Method for the Simple and Temperature-Permissive Cryopreservation of Mouse Embryos. PLoS ONE, 2013, 8, e49316.	2.5	31
126	Hereditary Nephrotic Syndrome with Progression to Renal Failure in a Mouse Model (ICGN Strain): Clinical Study. Nephron, 1994, 68, 239-244.	1.8	30

#	Article	IF	CITATIONS
127	Improvement of Cumulus-free Oocyte Maturation In Vitro and Its Application to Microinsemination with Primary Spermatocytes in Mice. Journal of Reproduction and Development, 2006, 52, 239-248.	1.4	30
128	The Effect on Intracytoplasmic Sperm Injection Outcome of Genotype, Male Germ Cell Stage and Freeze-Thawing in Mice. PLoS ONE, 2010, 5, e11062.	2.5	29
129	Devising Assisted Reproductive Technologies for Wild-Derived Strains of Mice: 37 Strains from Five Subspecies of Mus musculus. PLoS ONE, 2014, 9, e114305.	2.5	29
130	Telomere shortening by transgenerational transmission of TNF-α-induced TERRA via ATF7. Nucleic Acids Research, 2019, 47, 283-298.	14.5	29
131	Formation of spermatogonia and fertile oocytes in golden hamsters requires piRNAs. Nature Cell Biology, 2021, 23, 992-1001.	10.3	29
132	20.ALPHAHydroxysteroid Dehydrogenase Activity in Rat Placenta Endocrine Journal, 1993, 40, 673-681.	1.6	28
133	SCID-bg mice as xenograft recipients. Laboratory Animals, 1997, 31, 163-168.	1.0	28
134	Fertilization of Oocytes and Birth of Normal Pups Following Intracytoplasmic Injection with Spermatids in Mastomys (Praomys coucha)1. Biology of Reproduction, 2003, 68, 1821-1827.	2.7	28
135	Pregnancy by the tubal transfer of embryos developed after injection of round spermatids into oocyte cytoplasm of the cynomolgus monkey (Macaca fascicularis). Human Reproduction, 2003, 18, 1273-1280.	0.9	28
136	InÂVivo Genetic Manipulation of Spermatogonial Stem Cells and Their Microenvironment by Adeno-Associated Viruses. Stem Cell Reports, 2018, 10, 1551-1564.	4.8	28
137	Understanding the X chromosome inactivation cycle in mice. Epigenetics, 2014, 9, 204-211.	2.7	27
138	The Developmental Ability of Vitrified Oocytes from Different Mouse Strains Assessed by Parthenogenetic Activation and Intracytoplasmic Sperm Injection. Journal of Reproduction and Development, 2007, 53, 1199-1206.	1.4	26
139	t-SNARE Syntaxin2 (STX2) Is Implicated in Intracellular Transport of Sulfoglycolipids During Meiotic Prophase in Mouse Spermatogenesis. Biology of Reproduction, 2013, 88, 141-141.	2.7	26
140	The golden (Syrian) hamster as a model for the study of reproductive biology: Past, present, and future. Reproductive Medicine and Biology, 2019, 18, 34-39.	2.4	26
141	Equilibrium Vitrification of Mouse Embryos1. Biology of Reproduction, 2010, 82, 444-450.	2.7	25
142	Impaired active DNA demethylation in zygotes generated by round spermatid injection. Human Reproduction, 2015, 30, 1178-1187.	0.9	25
143	Microinsemination with First-Wave Round Spermatids from Immature Male Mice. Journal of Reproduction and Development, 2004, 50, 131-137.	1.4	25
144	Functional assessment of centrosomes of spermatozoa and spermatids microinjected into rabbit oocytes. Molecular Reproduction and Development, 2009, 76, 270-277.	2.0	24

#	Article	IF	CITATIONS
145	RNAi-mediated Knockdown of <i>Xist</i> Does Not Rescue the Impaired Development of Female Cloned Mouse Embryos. Journal of Reproduction and Development, 2013, 59, 231-237.	1.4	24
146	A Missense Mutation in Rev7 Disrupts Formation of Poll¶, Impairing Mouse Development and Repair of Genotoxic Agent-induced DNA Lesions. Journal of Biological Chemistry, 2014, 289, 3811-3824.	3.4	24
147	Chromosomes of mouse primary spermatocytes undergo meiotic divisions after incorporation into homologous immature oocytes. Zygote, 1997, 5, 177-182.	1.1	23
148	Abnormalities of Extracellular Matrices and Transforming Growth Factor .BETA.1 Localization in the Kidney of the Hereditary Nephrotic Mice (ICGN Strain) Journal of Veterinary Medical Science, 1999, 61, 769-776.	0.9	23
149	Microinsemination, nuclear transfer, and cytoplasmic transfer: the application of new reproductive engineering techniques to mouse genetics. Mammalian Genome, 2001, 12, 803-812.	2.2	23
150	Cytoplasmic Asters Are Required for Progression Past the First Cell Cycle in Cloned Mouse Embryos1. Biology of Reproduction, 2004, 71, 2022-2028.	2.7	23
151	Efficient production of large deletion and gene fragment knock-in mice mediated by genome editing with Cas9-mouse Cdt1 in mouse zygotes. Methods, 2021, 191, 23-31.	3.8	23
152	Intracytoplasmic sperm injection induces transcriptome perturbation without any transgenerational effect. Biochemical and Biophysical Research Communications, 2011, 410, 282-288.	2.1	22
153	Autologous transplantation of spermatogonial stem cells restores fertility in congenitally infertile mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7837-7844.	7.1	22
154	Sperm nuclear envelope: breakdown of intrinsic envelope and <i>de novo </i> formation in hamster oocytes or eggs. Zygote, 1997, 5, 35-46.	1.1	21
155	Correlation of Functional and Ultrastructural Abnormalities of Mitochondria in Mouse Heart Carrying a Pathogenic Mutant mtDNA with a 4696-bp Deletion. Biochemical and Biophysical Research Communications, 2001, 288, 901-907.	2.1	21
156	A Novel Mouse Model for Invariant NKT Cell Study. Journal of Immunology, 2007, 179, 3888-3895.	0.8	21
157	Effects of Akt signaling on nuclear reprogramming. Genes To Cells, 2008, 13, 1269-1277.	1.2	21
158	Mouse Cloning Using a Drop of Peripheral Blood1. Biology of Reproduction, 2013, 89, 24.	2.7	21
159	ROS amplification drives mouse spermatogonial stem cell self-renewal. Life Science Alliance, 2019, 2, e201900374.	2.8	21
160	An electron microscopic study of glomerular lesions in hereditary nephrotic mice (ICGN strain). Virchows Archiv A, Pathological Anatomy and Histopathology, 1990, 417, 223-228.	1.4	20
161	Affinity binding of hamster oviductin to spermatozoa and its influence on in vitro fertilization. Molecular Reproduction and Development, 1994, 39, 322-327.	2.0	20
162	Development of Embryos in Superovulated Guinea Pigs following Active Immunization against the Inhibin .ALPHASubunit Endocrine Journal, 2000, 47, 451-459.	1.6	20

#	Article	IF	Citations
163	Optimization of a Protocol for Cryopreservation of Mouse Spermatozoa Using Cryotubes. Journal of Reproduction and Development, 2012, 58, 156-161.	1.4	20
164	Evolution of Glomerular Lesions in Nephrotic ICGN Mice: Serial Biopsy Study with Electron Microscopy Journal of Veterinary Medical Science, 1991, 53, 513-515.	0.9	19
165	Sex-Reversed Somatic Cell Cloning in the Mouse. Journal of Reproduction and Development, 2009, 55, 566-569.	1.4	19
166	Tenc1-Deficient Mice Develop Glomerular Disease in a Strain-Specific Manner. Nephron Experimental Nephrology, 2013, 123, 22-33.	2.2	19
167	Generation of Cloned Mice from Adult Neurons by Direct Nuclear Transfer1. Biology of Reproduction, 2015, 92, 81.	2.7	19
168	One-step generation of multiple transgenic mouse lines using an improved Pronuclear Injection-based Targeted Transgenesis (i-PITT). BMC Genomics, 2015, 16, 274.	2.8	19
169	An interplay of NOX1-derived ROS and oxygen determines the spermatogonial stem cell self-renewal efficiency under hypoxia. Genes and Development, 2021, 35, 250-260.	5.9	19
170	MAFB is dispensable for the fetal testis morphogenesis and the maintenance of spermatogenesis in adult mice. PLoS ONE, 2018, 13, e0190800.	2.5	19
171	Improved Postimplantation Development of Rabbit Nuclear Transfer Embryos by Activation with Inositol 1,4,5-Trisphosphate. Cloning and Stem Cells, 2002, 4, 311-317.	2.6	18
172	Birth of Normal Offspring from Mouse Eggs Activated by a Phospholipase C.ZETA. Protein Lacking Three EF-hand Domains. Journal of Reproduction and Development, 2008, 54, 244-249.	1.4	18
173	Large-scale production of growing oocytes in vitro from neonatal mouse ovaries. International Journal of Developmental Biology, 2009, 53, 605-613.	0.6	18
174	Somatic Donor Cell Type Correlates with Embryonic, but Not Extra-Embryonic, Gene Expression in Postimplantation Cloned Embryos. PLoS ONE, 2013, 8, e76422.	2.5	18
175	Tensin2-deficient mice on FVB/N background develop severe glomerular disease. Journal of Veterinary Medical Science, 2016, 78, 811-818.	0.9	18
176	Decreased Expression of Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinase in the Kidneys of Hereditary Nephrotic (ICGN) Mice. Journal of Veterinary Medical Science, 2005, 67, 35-41.	0.9	17
177	Changes in alleleâ€specific association of histone modifications at the imprinting control regions during mouse preimplantation development. Genesis, 2009, 47, 611-616.	1.6	17
178	ES cell differentiation system recapitulates the establishment of imprinted gene expression in a cell-type-specific manner. Human Molecular Genetics, 2012, 21, 1391-1401.	2.9	17
179	Discrimination of Stem Cell Status after Subjecting Cynomolgus Monkey Pluripotent Stem Cells to Na \tilde{A} ve Conversion. Scientific Reports, 2017, 7, 45285.	3.3	17
180	Spermatogonial stem cell transplantation into nonablated mouse recipient testes. Stem Cell Reports, 2021, 16, 1832-1844.	4.8	17

#	Article	IF	Citations
181	Efficient production of androgenetic embryos by round spermatid injection. Genesis, 2009, 47, 155-160.	1.6	16
182	A Practical Novel Method for Ensuring Stable Capacitation of Spermatozoa from Cryopreserved C57BL/6J Sperm Suspension. Experimental Animals, 2009, 58, 395-401.	1.1	16
183	Genetic Influences in Mouse Spermatogonial Stem Cell Self-Renewal. Journal of Reproduction and Development, 2010, 56, 145-153.	1.4	16
184	Development of Nephrotic ICGN Mice. Experimental Animals, 1989, 38, 349-352.	1.1	15
185	Partial Characterization of the Gametes and Development of a Successful in Vitro Fertilization Procedure in the Mastomys (Praomys Coucha): A New Species for Reproductive Biology Research1. Biology of Reproduction, 1998, 58, 226-233.	2.7	15
186	Microdroplet <i>In Vitro</i> Fertilization Can Reduce the Number of Spermatozoa Necessary for Fertilizing Oocytes. Journal of Reproduction and Development, 2014, 60, 187-193.	1.4	15
187	Na $ ilde{A}$ -ve-like conversion enhances the difference in innate <i>in vitro</i> differentiation capacity between rabbit ES cells and iPS cells. Journal of Reproduction and Development, 2015, 61, 13-19.	1.4	15
188	Transfer of a Mouse Artificial Chromosome into Spermatogonial Stem Cells Generates Transchromosomic Mice. Stem Cell Reports, 2017, 9, 1180-1191.	4.8	15
189	Birth of Normal Mice Following Round Spermatid Injection Without Artificial Oocyte Activation. Journal of Reproduction and Development, 2011, 57, 534-538.	1.4	14
190	Cellular Dynamics of Mouse Trophoblast Stem Cells: Identification of a Persistent Stem Cell Type 1. Biology of Reproduction, 2016, 94, 122.	2.7	14
191	Efficient and scheduled production of pseudopregnant female mice for embryo transfer by estrous cycle synchronization. Journal of Reproduction and Development, 2017, 63, 539-545.	1.4	14
192	Aberrant imprinting in mouse trophoblast stem cells established from somatic cell nuclear transfer-derived embryos. Epigenetics, 2018, 13, 693-703.	2.7	14
193	Localization of Extracellular Matrix Receptors in ICGN Mice, a Strain of Mice with Hereditary Nephrotic Syndrome Journal of Veterinary Medical Science, 2001, 63, 1171-1178.	0.9	13
194	Cryopreservation of Mouse Embryos by Ethylene Glycol-Based Vitrification. Journal of Visualized Experiments, $2011, \ldots$	0.3	13
195	Generation of chimeric mice with spermatozoa fully derived from embryonic stem cells using a triple-target CRISPR method for <i>Nanos3</i> Section 1.04, 223-233.	2.7	13
196	Noncanonical imprinting sustains embryonic development and restrains placental overgrowth. Genes and Development, 2022, , .	5.9	13
197	Production of mitochondrial DNA transgenic mice using zygotes. Methods, 2002, 26, 358-363.	3.8	12
198	Anemia with Chronic Renal Disorder and Disrupted Metabolism of Erythropoietin in ICR-derived Glomerulonephritis (ICGN) Mice. Journal of Veterinary Medical Science, 2004, 66, 423-431.	0.9	12

#	Article	IF	CITATIONS
199	A Mutation in the Nuclear Pore Complex Gene Tmem48 Causes Gametogenesis Defects in Skeletal Fusions with Sterility (sks) Mice. Journal of Biological Chemistry, 2013, 288, 31830-31841.	3.4	12
200	Establishment of Paternal Genomic Imprinting in Mouse Prospermatogonia Analyzed by Nuclear Transfer1. Biology of Reproduction, 2014, 91, 120.	2.7	12
201	Mouse D1Pas1, a DEAD-box RNA helicase, is required for the completion of first meiotic prophase in male germ cells. Biochemical and Biophysical Research Communications, 2016, 478, 592-598.	2.1	12
202	Adeno-associated virus-mediated delivery of genes to mouse spermatogonial stem cells ^{<xref ref-type="fn" rid="afn1">â€</xref>} . Biology of Reproduction, 2017, 96, 221-231.	2.7	12
203	CRISPR/Cas9-mediated genome editing in wild-derived mice: generation of tamed wild-derived strains by mutation of the a (nonagouti) gene. Scientific Reports, 2017, 7, 42476.	3.3	12
204	Role of CD4+ T Cells in Allergic Airway Diseases: Learning from Murine Models. International Journal of Molecular Sciences, 2020, 21, 7480.	4.1	12
205	Preimplantation Embryo Development in Mastomys (Praomys coucha) In Vivo and In Vitro Journal of Reproduction and Development, 1997, 43, 65-71.	1.4	12
206	Characteristic Changes in Carbohydrate Profile in the Kidneys of Hereditary Nephrotic Mice (ICGN) Tj ETQq0 0 0	rgBT/Ove	erlock 10 Tf 50
207	Localization of Proliferative and Apoptotic Cells in the Kidneys of ICR-Derived Glomerulonephritis(ICGN) Mice Journal of Veterinary Medical Science, 2001, 63, 781-787.	0.9	11
208	Efficient production of intersubspecific hybrid mice and embryonic stem cells by intracytoplasmic sperm injection. Molecular Reproduction and Development, 2007, 74, 1081-1088.	2.0	11
209	Ovarian Localization of Immunoglobulin G and Inhibin .ALPHASubunit in Guinea Pigs after Passive Immunization against the Inhibin .ALPHASubunit Journal of Reproduction and Development, 2000, 46, 293-299.	1.4	11
210	The Critical Roles of Serum/Glucocorticoid-Regulated Kinase 3 (SGK3) in the Hair Follicle Morphogenesis and Homeostasis. American Journal of Pathology, 2006, 168, 1119-1133.	3.8	10
211	Cryopreservation of Embryos in Laboratory Species. Journal of Mammalian Ova Research, 2010, 27, 87-92.	0.1	10
212	Pluripotent cell derivation from male germline cells by suppression of <i>Dmrt1</i> and <i>Trp53</i> Journal of Reproduction and Development, 2015, 61, 473-484.	1.4	10
213	Hyperâ€reactive cloned mice generated by direct nuclear transfer of antigenâ€specific CD 4 + T cells. EMBO Reports, 2017, 18, 885-893.	4.5	10
214	Highly rigid H3.1/H3.2â€"H3K9me3 domains set a barrier for cell fate reprogramming in trophoblast stem cells. Genes and Development, 2022, 36, 84-102.	5.9	10
215	Changes in the Localization of Type I, III and IV Collagen mRNAs in the Kidneys of Hereditary Nephritic (ICGN) Mice with Renal Fibrosis. Journal of Veterinary Medical Science, 2004, 66, 123-128.	0.9	9
216	Birth of offspring after transfer of Mongolian gerbil (Meriones unguiculatus) embryos cryopreserved by vitrification. Molecular Reproduction and Development, 2005, 70, 464-470.	2.0	9

#	Article	IF	Citations
217	Equilibrium vitrification of mouse embryos at various developmental stages. Molecular Reproduction and Development, 2012, 79, 785-794.	2.0	9
218	Development of a generalâ€purpose method for cell purification using <scp>C</scp> re/lox <scp>P</scp> â€mediated recombination. Genesis, 2015, 53, 387-393.	1.6	9
219	Rabbit models for biomedical research revisited via genome editing approaches. Journal of Reproduction and Development, 2017, 63, 435-438.	1.4	9
220	Molecular and genetic characterization of partial masculinization in embryonic ovaries grafted into male nude mice. PLoS ONE, 2019, 14, e0212367.	2.5	9
221	Epigenetic abnormalities associated with somatic cell nuclear transfer. Reproduction, 2021, 162, F45-F58.	2.6	9
222	Localization of HIVâ€1 in human thymic implant in SCIDâ€hu mice after intravenous inoculation. International Journal of Experimental Pathology, 1996, 77, 201-206.	1.3	8
223	Cloning Mice. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot094425.	0.3	8
224	Application of auxin-inducible degron technology to mouse oocyte activation with PLCζ. Journal of Reproduction and Development, 2018, 64, 319-326.	1.4	8
225	Improved development of mouse somatic cell nuclear transfer embryos by chlamydocin analogues, class I and IIa histone deacetylase inhibitorsâ€. Biology of Reproduction, 2021, 105, 543-553.	2.7	8
226	CRISPR/Cas9-based genetic screen of SCNT-reprogramming resistant genes identifies critical genes for male germ cell development in mice. Scientific Reports, 2021, 11, 15438.	3.3	8
227	Role of retinoic acid and fibroblast growth factor 2 in neural differentiation from cynomolgus monkey (Macaca fascicularis) embryonic stem cells. Comparative Medicine, 2014, 64, 140-7.	1.0	8
228	Regeneration of spermatogenesis by mouse germ cell transplantation into allogeneic and xenogeneic testis primordia or organoids. Stem Cell Reports, 2022, 17, 924-935.	4.8	8
229	A Mutation in the Serum and Glucocorticoid-Inducible Kinase-Like Kinase (Sgkl) Gene is Associated with Defective Hair Growth in Mice. DNA Research, 2004, 11, 371-379.	3.4	7
230	Production of Mouse Embryonic Stem Cell Lines from Maturing Oocytes by Direct Conversion of Meiosis into Mitosis. Stem Cells, 2011, 29, 517-527.	3.2	7
231	Generation of a novel germline stem cell line expressing a germlineâ€specific reporter in the mouse. Genesis, 2013, 51, 498-505.	1.6	7
232	How to improve mouse cloning. Theriogenology, 2020, 150, 215-220.	2.1	7
233	Microtubule Organization in Hamster Oocytes after Fertilization with Mature Spermatozoa and Round Spermatids Journal of Reproduction and Development, 1998, 44, 185-189.	1.4	7
234	Use of anti-inhibin monoclonal antibody for increasing the litter size of mouse strains and its application to <i>i</i> ii>-GONAD. Biology of Reproduction, 2022, , .	2.7	7

#	Article	IF	Citations
235	Effect of Placental Soluble Factors on Growth and Differentiation of Mouse Ectoplacental Cone In Vitro Journal of Veterinary Medical Science, 1991, 53, 839-845.	0.9	6
236	Enhanced Engraftment of Human Peripheral Blood Lymphocytes into Anti-murine Interferon-Î ³ Monoclonal Antibody-Treated C.B17-scidMice. Cellular Immunology, 1998, 183, 60-69.	3.0	6
237	Dysfunction of Erythropoietin-Producing Interstitial Cells in the Kidneys of ICR-derived Glomerulonephritis (ICGN) Mice. Journal of Veterinary Medical Science, 2005, 67, 891-899.	0.9	6
238	Mouse embryonic stem cells cultured under serum- and feeder-free conditions maintain their self-renewal capacity on hydroxyapatite. Materials Science and Engineering C, 2014, 34, 214-220.	7.3	6
239	In quest of genomic treasure. Journal of Reproduction and Development, 2015, 61, 489-493.	1.4	6
240	OGG1 protects mouse spermatogonial stem cells from reactive oxygen species in cultureâ€. Biology of Reproduction, 2021, 104, 706-716.	2.7	6
241	Improvement of Anemia Associated with Chronic Renal Failure by Recombinant Human Erythropoietin Treatment in ICR-Derived Glomerulonephritis (ICGN) Mice. Journal of Veterinary Medical Science, 2004, 66, 883-886.	0.9	5
242	Oocyteâ€activating capacity of fresh and frozen–thawed spermatids in the common marmoset (<i>Callithrix jacchus</i>). Molecular Reproduction and Development, 2018, 85, 376-386.	2.0	5
243	Identification of quantitative trait loci associated with the susceptibility of mouse spermatozoa to cryopreservation. Journal of Reproduction and Development, 2018, 64, 117-127.	1.4	5
244	Early production of offspring by <i>in vitro</i> fertilization using first-wave spermatozoa from prepubertal male mice. Journal of Reproduction and Development, 2019, 65, 467-473.	1.4	5
245	Dissecting the role of the germinal vesicle nuclear envelope and soluble content in the process of somatic cell remodelling and reprogramming. Journal of Reproduction and Development, 2019, 65, 433-441.	1.4	5
246	Equilibrium vitrification of mouse embryos using low concentrations of cryoprotectants. Cryobiology, 2021, 98, 127-133.	0.7	5
247	Expression of Imprinted Genes in Cloned Mice. Methods in Molecular Biology, 2006, 348, 237-246.	0.9	5
248	Birth of Pups after Intra-ovarian Bursal Transfer of Hamster Zygotes Journal of Reproduction and Development, 1995, 41, 339-343.	1.4	5
249	Mouse <i>in vivo</i> -derived late 2-cell embryos have higher developmental competence after high osmolality vitrification and â^80°C preservation than IVF or ICSI embryos. Journal of Reproduction and Development, 2022, 68, 118-124.	1.4	5
250	Serum Biochemical Values in Two Inbred Strains of Mastomys (Praomys coucha) Experimental Animals, 1999, 48, 293-295.	1.1	4
251	Follicle selection in cyclic guinea pigs with active immunization against inhibin \hat{l}_{\pm} -subunit. Life Sciences, 2000, 66, 2489-2497.	4.3	4
252	Fertilization and preimplantation development of mouse oocytes after prolonged incubation with caffeine. Reproductive Medicine and Biology, 2004, 3, 245-251.	2.4	4

#	Article	IF	Citations
253	Erythropoietin-Producing Cells in the Liver of ICR-Derived Glomerulonephritis (ICGN) Mice. Journal of Veterinary Medical Science, 2006, 68, 65-68.	0.9	4
254	Selection of accurate reference genes in mouse trophoblast stem cells for reverse transcription-quantitative polymerase chain reaction. Journal of Reproduction and Development, 2016, 62, 311-315.	1.4	4
255	Development of assisted reproductive technologies for Mus spretusâ€. Biology of Reproduction, 2021, 104, 234-243.	2.7	4
256	Maintenance of mouse trophoblast stem cells in KSR-based medium allows conventional 3D culture. Journal of Reproduction and Development, 2021, 67, 197-205.	1.4	4
257	Effect of hemorrhagic toxin produced byClostridium sporogeneson rabbit ligated intestinal loop. Microbial Pathogenesis, 1997, 22, 31-38.	2.9	3
258	Recent advances in the microinsemination of laboratory animals. Journal of Developmental and Physical Disabilities, 2000, 23, 60-62.	3.6	3
259	Effect of Human Erythropoietin (hEPO) Treatment on Anemia in ICR-derived Glomerulonephritis (ICGN) Mice. Experimental Animals, 2005, 54, 181-184.	1.1	3
260	Development of reproductive engineering techniques at the RIKEN BioResource Center. Experimental Animals, 2017, 66, 1-16.	1.1	3
261	Improving ovulation in gilts using antiâ€inhibin serum treatment combined with fixedâ€time artificial insemination. Reproduction in Domestic Animals, 2021, 56, 112-119.	1.4	3
262	Birth of mice from meiotically arrested spermatocytes following biparental meiosis in halved oocytes. EMBO Reports, 2022, 23, e54992.	4.5	3
263	Ultrastructural changes in hamster spermatogenic cell nuclei after incorporation into homologous oocytes by electrofusion. Molecular Reproduction and Development, 1999, 52, 66-73.	2.0	2
264	Recent Technical Breakthroughs for ARTs in Mice. Journal of Mammalian Ova Research, 2017, 34, 13-21.	0.1	2
265	Birth of a marmoset following injection of elongated spermatid from a prepubertal male. Molecular Reproduction and Development, 2019, 86, 928-930.	2.0	2
266	$\mbox{\sc i>Tsga8}$ is required for spermatid morphogenesis and male fertility in mice. Development (Cambridge), 2021, 148, .	2.5	2
267	Easy and quick (EQ) sperm freezing method for urgent preservation of mouse strains. Scientific Reports, 2021, 11, 14149.	3.3	2
268	Mouse resources at the RIKEN BioResource Research Center and the National BioResource Project core facility in Japan. Mammalian Genome, $2021, 1.$	2.2	2
269	Microinsemination Using Spermatogenic Cells in Mammals. , 1999, , 189-202.		2
270	Hereditary Hydronephrosis in C57L/MsNrs Mice. Experimental Animals, 1993, 42, 107-109.	1.1	1

#	Article	IF	CITATIONS
271	Simple i.v. Inoculation of HIV-1 to Thy/Liv SCID-hu Mice Induce Reproducible HIV Infection with Narrowing of Medulla in Human Thymic Implant Journal of Veterinary Medical Science, 1997, 59, 259-263.	0.9	1
272	Nuclear Transfer in the Mouse Oocyte. Methods in Molecular Biology, 2013, 957, 285-300.	0.9	1
273	Germ cell depletion in recipient testis has adverse effects on spermatogenesis in orthotopically transplanted testis pieces via retinoic acid insufficiency. Scientific Reports, 2020, 10, 10796.	3.3	1
274	Progress of genome editing technology and developmental biology useful for radiation research. Journal of Radiation Research, 2021, 62, i53-i63.	1.6	1
275	Epigenetic regulation in mammalian development and dysfunction: the effects of somatic cloning and genomic imprinting. International Congress Series, 2002, 1246, 151-159.	0.2	0
276	Intra-strain polymorphisms are detected but no genomic alteration is found in cloned mice. Biochemical and Biophysical Research Communications, 2006, 348, 166-169.	2.1	0
277	Reproductive Technologies and Related Studies in the Cynomolgus Monkey. Journal of Mammalian Ova Research, 2008, 25, 133-142.	0.1	0
278	Clone-Specific X-Linked Gene Repression Caused by Ectopic Xist Transcripts from the Active X Chromosome. , 2014, , 161-172.		0
279	Somatic Cell Nuclear Transfer in Mice: Basic Protocol and Its Modification for Correcting X Chromosome Inactivation Status. Methods in Molecular Biology, 2018, 1861, 55-65.	0.9	0
280	Microinsemination and Nuclear Transfer with Male Germ Cells. , 2002, , 175-186.		0