Benoit Nabholz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7394687/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Response to KratochvÃł and Rovatsos. Current Biology, 2022, 32, R30-R31.	3.9	2
2	High-quality carnivoran genomes from roadkill samples enable comparative species delineation in aardwolf and bat-eared fox. ELife, 2021, 10, .	6.0	15
3	Island songbirds as windows into evolution in small populations. Current Biology, 2021, 31, 1303-1310.e4.	3.9	56
4	Genome-wide macroevolutionary signatures of key innovations in butterflies colonizing new host plants. Nature Communications, 2021, 12, 354.	12.8	43
5	Whole Genome Shotgun Phylogenomics Resolves the Pattern and Timing of Swallowtail Butterfly Evolution. Systematic Biology, 2020, 69, 38-60.	5.6	65
6	Within-island diversification in a passerine bird. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192999.	2.6	16
7	MitoFinder: Efficient automated largeâ€scale extraction of mitogenomic data in target enrichment phylogenomics. Molecular Ecology Resources, 2020, 20, 892-905.	4.8	785
8	Is adaptation limited by mutation? A timescale-dependent effect of genetic diversity on the adaptive substitution rate in animals. PLoS Genetics, 2020, 16, e1008668.	3.5	55
9	Title is missing!. , 2020, 16, e1008668.		0
10	Title is missing!. , 2020, 16, e1008668.		0
11	Title is missing!. , 2020, 16, e1008668.		0
12	Title is missing!. , 2020, 16, e1008668.		0
13	Title is missing!. , 2020, 16, e1008668.		0
14	Influence of Recombination and GC-biased Gene Conversion on the Adaptive and Nonadaptive Substitution Rate in Mammals versus Birds. Molecular Biology and Evolution, 2019, 36, 458-471.	8.9	41
15	Mitochondrial phylogenomics, the origin of swallowtail butterflies, and the impact of the number of clocks in <scp>B</scp> ayesian molecular dating. Systematic Entomology, 2018, 43, 460-480.	3.9	34
16	Illumina Library Preparation for Sequencing the GC-Rich Fraction of Heterogeneous Genomic DNA. Genome Biology and Evolution, 2018, 10, 616-622.	2.5	32
17	Overestimation of the adaptive substitution rate in fluctuating populations. Biology Letters, 2018, 14, 20180055.	2.3	44
18	Avian Genomes Revisited: Hidden Genes Uncovered and the Rates versus Traits Paradox in Birds. Molecular Biology and Evolution, 2017, 34, 3123-3131.	8.9	90

Benoit Nabholz

#	Article	IF	CITATIONS
19	Large Variation in the Ratio of Mitochondrial to Nuclear Mutation Rate across Animals: Implications for Genetic Diversity and the Use of Mitochondrial DNA as a Molecular Marker. Molecular Biology and Evolution, 2017, 34, 2762-2772.	8.9	240
20	A large set of 26 new reference transcriptomes dedicated to comparative population genomics in crops and wild relatives. Molecular Ecology Resources, 2017, 17, 565-580.	4.8	53
21	Evolutionary forces affecting synonymous variations in plant genomes. PLoS Genetics, 2017, 13, e1006799.	3.5	36
22	Hemizygosity Enhances Purifying Selection: Lack of Fast-Z Evolution in Two Satyrine Butterflies. Genome Biology and Evolution, 2016, 8, 3108-3119.	2.5	31
23	Body massâ€corrected molecular rate for bird mitochondrial DNA. Molecular Ecology, 2016, 25, 4438-4449.	3.9	70
24	Life History Traits, Protein Evolution, and the Nearly Neutral Theory in Amniotes. Molecular Biology and Evolution, 2016, 33, 1517-1527.	8.9	75
25	Gene expression, chromosome heterogeneity and the fast-X effect in mammals. Biology Letters, 2015, 11, 20150010.	2.3	12
26	The Bimodal Distribution of Genic GC Content Is Ancestral to Monocot Species. Genome Biology and Evolution, 2015, 7, 336-348.	2.5	42
27	Phylogenomic analyses data of the avian phylogenomics project. GigaScience, 2015, 4, 4.	6.4	72
28	Whole-genome analyses resolve early branches in the tree of life of modern birds. Science, 2014, 346, 1320-1331.	12.6	1,583
29	K r /K c but not d N /d S correlates positively with body mass in birds, raising implications for inferring lineage-specific selection. Genome Biology, 2014, 15, 542.	8.8	53
30	Transcriptome population genomics reveals severe bottleneck and domestication cost in the <scp>A</scp> frican rice (<i><scp>O</scp>ryza glaberrima</i>). Molecular Ecology, 2014, 23, 2210-2227.	3.9	75
31	Comparative population genomics in animals uncovers the determinants of genetic diversity. Nature, 2014, 515, 261-263.	27.8	493
32	Genome-wide analysis in chicken reveals that local levels of genetic diversity are mainly governed by the rate of recombination. BMC Genomics, 2013, 14, 86.	2.8	30
33	Population genomics of the endangered giant Galápagos tortoise. Genome Biology, 2013, 14, R136.	9.6	32
34	Bio++: Efficient Extensible Libraries and Tools for Computational Molecular Evolution. Molecular Biology and Evolution, 2013, 30, 1745-1750.	8.9	163
35	Reference-Free Population Genomics from Next-Generation Transcriptome Data and the Vertebrate–Invertebrate Gap. PLoS Genetics, 2013, 9, e1003457.	3.5	157
36	Reconstructing the Phylogenetic History of Long-Term Effective Population Size and Life-History Traits Using Patterns of Amino Acid Replacement in Mitochondrial Genomes of Mammals and Birds. Genome Biology and Evolution, 2013, 5, 1273-1290.	2.5	62

BENOIT NABHOLZ

#	Article	IF	CITATIONS
37	High Levels of Gene Expression Explain the Strong Evolutionary Constraint of Mitochondrial Protein-Coding Genes. Molecular Biology and Evolution, 2013, 30, 272-284.	8.9	67
38	Significant Selective Constraint at 4-Fold Degenerate Sites in the Avian Genome and Its Consequence for Detection of Positive Selection. Genome Biology and Evolution, 2011, 3, 1381-1389.	2.5	31
39	A comprehensive phylogeny of Neurospora reveals a link between reproductive mode and molecular evolution in fungi. Molecular Phylogenetics and Evolution, 2011, 59, 649-663.	2.7	111
40	Dynamic Evolution of Base Composition: Causes and Consequences in Avian Phylogenomics. Molecular Biology and Evolution, 2011, 28, 2197-2210.	8.9	84
41	Evolutionary Constraint in Flanking Regions of Avian Genes. Molecular Biology and Evolution, 2011, 28, 2481-2489.	8.9	5
42	Obtaining mtDNA genomes from next-generation transcriptome sequencing: A case study on the basal Passerida (Aves: Passeriformes) phylogeny. Molecular Phylogenetics and Evolution, 2010, 57, 466-470.	2.7	36
43	The genome of a songbird. Nature, 2010, 464, 757-762.	27.8	770
44	An Evolutionary Genome Scan for Longevity-Related Natural Selection in Mammals. Molecular Biology and Evolution, 2010, 27, 840-847.	8.9	62
45	Molecular evolution of genes in avian genomes. Genome Biology, 2010, 11, R68.	9.6	125
46	Mitochondrial whims: metabolic rate, longevity and the rate of molecular evolution. Biology Letters, 2009, 5, 413-416.	2.3	90
47	The erratic mitochondrial clock: variations of mutation rate, not population size, affect mtDNA diversity across birds and mammals. BMC Evolutionary Biology, 2009, 9, 54.	3.2	212
48	Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Molecular Ecology, 2009, 18, 4541-4550.	3.9	854
49	Inverse relationship between longevity and evolutionary rate of mitochondrial proteins in mammals and birds. Mitochondrion, 2009, 9, 51-57.	3.4	36
50	Determination of Mitochondrial Genetic Diversity in Mammals. Genetics, 2008, 178, 351-361.	2.9	107
51	Strong Variations of Mitochondrial Mutation Rate across Mammalsthe Longevity Hypothesis. Molecular Biology and Evolution, 2007, 25, 120-130.	8.9	394
52	A bird's white-eye view on avian sex chromosome evolution. , 0, 1, .		13