
Klaus Bister

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/739437/publications.pdf Version: 2024-02-01

KIALIS RISTED

#	Article	IF	CITATIONS
1	MYC Analysis in Cancer and Evolution. Methods in Molecular Biology, 2021, 2318, 87-117.	0.4	4
2	The brain acidâ€ s oluble protein 1 (BASP1) interferes with the oncogenic capacity of MYC and its binding to calmodulin. Molecular Oncology, 2020, 14, 625-644.	2.1	19
3	Differential regulation ofmychomologs by Wnt/β atenin signaling in the early metazoanHydra. FEBS Journal, 2019, 286, 2295-2310.	2.2	13
4	Targeting the Architecture of Deregulated Protein Complexes in Cancer. Advances in Protein Chemistry and Structural Biology, 2018, 111, 101-132.	1.0	5
5	MYC and RAF: Key Effectors in Cellular Signaling and Major Drivers in Human Cancer. Current Topics in Microbiology and Immunology, 2017, 407, 117-151.	0.7	25
6	Calcium-dependent binding of Myc to calmodulin. Oncotarget, 2017, 8, 3327-3343.	0.8	16
7	Expanding the Scope of 2′‣CF ₃ Modified RNA. Chemistry - A European Journal, 2015, 21, 10400-10407.	1.7	12
8	In-vivo detection of binary PKA network interactions upon activation of endogenous GPCRs. Scientific Reports, 2015, 5, 11133.	1.6	12
9	Stopping MYC in its tracks. Aging, 2015, 7, 463-464.	1.4	2
10	Discovery of oncogenes: The advent of molecular cancer research. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15259-15260.	3.3	24
11	<i>Hydra myc2</i> , a unique pre-bilaterian member of the <i>myc</i> gene family, is activated in cell proliferation and gametogenesis. Biology Open, 2014, 3, 397-407.	0.6	23
12	Efficient Access to 3′-Terminal Azide-Modified RNA for Inverse Click-Labeling Patterns. Bioconjugate Chemistry, 2014, 25, 188-195.	1.8	47
13	Inhibitor of MYC identified in a Kröhnke pyridine library. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12556-12561.	3.3	110
14	<i>In vivo</i> quantification and perturbation of Myc-Max interactions and the impact on oncogenic potential. Oncotarget, 2014, 5, 8869-8878.	0.8	27
15	1H, 13C, and 15N backbone and side chain resonance assignments of the C-terminal DNA binding and dimerization domain of v-Myc. Biomolecular NMR Assignments, 2013, 7, 321-324.	0.4	4
16	Interplay of PKA and Rac. Small GTPases, 2013, 4, 247-251.	0.7	12
17	Transcriptional control of DNA replication licensing by Myc. Scientific Reports, 2013, 3, 3444.	1.6	37
18	Analyzing Myc in Cell Transformation and Evolution. Methods in Molecular Biology, 2013, 1012, 21-49.	0.4	2

KLAUS BISTER

#	Article	IF	CITATIONS
19	2′-Azido RNA, a Versatile Tool for Chemical Biology: Synthesis, X-ray Structure, siRNA Applications, Click Labeling. ACS Chemical Biology, 2012, 7, 581-589.	1.6	98
20	The Metastasis-Associated Extracellular Matrix Protein Osteopontin Forms Transient Structure in Ligand Interaction Sites. Biochemistry, 2011, 50, 6113-6124.	1.2	64
21	Lipocalin Q83 Reveals a Dual Ligand Binding Mode with Potential Implications for the Functions of Siderocalins. Biochemistry, 2011, 50, 9192-9199.	1.2	11
22	Electron Detachment Dissociation for Topâ€Down Mass Spectrometry of Acidic Proteins. Chemistry - A European Journal, 2011, 17, 4460-4469.	1.7	29
23	Chemical Synthesis of Siteâ€Specifically 2′â€Azidoâ€Modified RNA and Potential Applications for Bioconjugation and RNA Interference. ChemBioChem, 2011, 12, 47-51.	1.3	66
24	The v-myc-induced Q83 Lipocalin Is a Siderocalin. Journal of Biological Chemistry, 2010, 285, 41646-41652.	1.6	23
25	Stem cell-specific activation of an ancestral <i>myc</i> protooncogene with conserved basic functions in the early metazoan <i>Hydra</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4051-4056.	3.3	93
26	Inhibition of Myc-induced cell transformation by brain acid-soluble protein 1 (BASP1). Proceedings of the United States of America, 2009, 106, 5604-5609.	3.3	84
27	Backbone assignment of osteopontin, a cytokine and cell attachment protein implicated in tumorigenesis. Biomolecular NMR Assignments, 2008, 2, 29-31.	0.4	11
28	TOJ3, a v-jun target with intrinsic oncogenic potential, is directly regulated by Jun via a novel AP-1 binding motif. Virology, 2008, 378, 371-376.	1.1	2
29	Letter to the editor: Backbone assignment of the dimerization and DNA-binding domain of the oncogenic transcription factor v-Myc in complex with its authentic binding partner Max. Journal of Biomolecular NMR, 2004, 30, 361-362.	1.6	6
30	Cell Transformation by the v-myc Oncogene Abrogates c-Myc/Max-mediated Suppression of a C/EBPβ-dependent Lipocalin Gene. Journal of Molecular Biology, 2003, 333, 33-46.	2.0	18
31	Structure, function, and dynamics of the dimerization and DNA-binding domain of oncogenic transcription factor v-Myc11Edited by P. E. Wright. Journal of Molecular Biology, 2001, 307, 1395-1410.	2.0	96
32	Application of Cross-Correlated NMR Spin Relaxation to the Zinc-Finger Protein CRP2(LIM2):Â Evidence for Collective Motions in LIM Domainsâ€,‡. Biochemistry, 2001, 40, 9596-9604.	1.2	10
33	TOJ3, a target of the v-Jun transcription factor, encodes a protein with transforming activity related to human microspherule protein 1 (MCRS1). Oncogene, 2001, 20, 7524-7535.	2.6	54
34	Sequence-specific resonance assignments of Q83, a lipocalin highly expressed in v-myc-transformed avian fibroblasts. Journal of Biomolecular NMR, 2000, 17, 177-178.	1.6	4
35	Conditional Cell Transformation by Doxycycline-Controlled Expression of the ASV17 v-jun Allele. Virology, 2000, 270, 98-110.	1.1	11
36	Conditional Cell Transformation by Doxycycline-Controlled Expression of the MC29 v-mycAllele. Virology, 1999, 253, 193-207.	1.1	26

KLAUS BISTER

#	Article	IF	CITATIONS
37	Mutational analysis and NMR spectroscopy of quail cysteine and glycine-rich protein CRP2 reveal an intrinsic segmental flexibility of LIM domains. Journal of Molecular Biology, 1999, 292, 893-908.	2.0	23
38	Structure and transcriptional regulation of BKJ, a novel AP-1 target gene activated during jun- or fos-induced fibroblast transformation. Oncogene, 1998, 17, 2901-2913.	2.6	20
39	Structure and Intramodular Dynamics of the Amino-Terminal LIM Domain from Quail Cysteine- and Glycine-Rich Protein CRP2â€,‡. Biochemistry, 1998, 37, 7127-7134.	1.2	34
40	Bispheric Coordinative Structuring in a Zinc Finger Protein:Â NMR Analysis of a Point Mutant of the Carboxy-Terminal LIM Domain of Quail Cysteine- and Glycine-Rich Protein CRP2. Journal of the American Chemical Society, 1998, 120, 7127-7128.	6.6	21
41	Structure of Cysteine- and Glycine-rich Protein CRP2. Journal of Biological Chemistry, 1998, 273, 23233-23240.	1.6	42
42	Solution Structure of the Carboxyl-terminal LIM Domain from Quail Cysteine-rich Protein CRP2. Journal of Biological Chemistry, 1997, 272, 12001-12007.	1.6	47
43	Cloning, Structural Analysis, and Chromosomal Localization of the HumanCSRP2Gene Encoding the LIM Domain Protein CRP2. Genomics, 1997, 44, 83-93.	1.3	32
44	Suppression in transformed avian fibroblasts of a gene (CO6) encoding a membrane protein related to mammalian potassium channel regulatory subunits. Oncogene, 1997, 14, 1109-1116.	2.6	22
45	A Quail Long-Term Cell Culture Transformed by a Chimeric jun Oncogene. Virology, 1995, 207, 321-326.	1.1	16
46	The Cysteine-rich Protein Family of Highly Related LIM Domain Proteins. Journal of Biological Chemistry, 1995, 270, 28946-28954.	1.6	113
47	Sequence and expression of a glyceraldehyde-3-phosphate dehydrogenase-encoding gene from quail embryo fibroblasts. Gene, 1993, 128, 269-272.	1.0	26
48	Nucleotide sequence of the CMII v-myc allele. Virology, 1986, 154, 219-223.	1.1	19
49	Oncogenes in Retroviruses and Cells: Biochemistry and Molecular Genetics. Advances in Cancer Research, 1986, 47, 99-188.	1.9	84
50	Molecular and biological properties of MH2D12, a spontaneous mil deletion mutant of avian oncovirus MH2. Virology, 1985, 142, 248-262.	1.1	21
51	Nucleotide sequence analysis of the chicken gene c-mil, the progenitor of the retroviral oncogene v-mil. Virology, 1985, 143, 359-367.	1.1	34
52	Homologous cell-derived oncogenes in avian carcinoma virus MH2 and murine sarcoma virus 3611. Nature, 1984, 307, 281-284.	13.7	125
53	Structural relationship between the chicken protooncogene c-mil and the retroviral oncogene v-mil. Virology, 1984, 137, 217-224.	1.1	22
54	Immunological analysis of v-myc gene products using antibodies against a myc-specific synthetic peptide. Virology, 1984, 136, 348-358.	1.1	27

KLAUS BISTER

#	Article	IF	CITATIONS
55	Deletions Within the Transformation-Specific RNA Sequences of Acute Leukemia Virus MC29 Give Rise to Partially Transformation-Defective Mutants. Journal of Virology, 1982, 41, 754-766.	1.5	69
56	Temperature-Sensitive Mutants of Fujinami Sarcoma Virus: Tumorigenicity and Reversible Phosphorylation of the Transforming p140 Protein. Journal of Virology, 1981, 38, 1064-1076.	1.5	40
57	Avian Retroviruses That Cause Carcinoma and Leukemia: Identification of Nucleotide Sequences Associated with Pathogenicity. Journal of Virology, 1980, 33, 962-968.	1.5	47
58	FUJINAMI SARCOMA VIRUS AND SARCOMAGENIC, AVIAN ACUTE LEUKEMIA VIRUSES HAVE SIMILAR GENETIC STRUCTURES. , 1980, , 527-539.		2
59	Differential inducibility of Epstein-Barr virus in cloned, non-producer raji cells. International Journal of Cancer, 1979, 23, 818-825.	2.3	29
60	Retinoic acid inhibition of Epstein-Barr virus induction. Nature, 1979, 278, 553-554.	13.7	74
61	Avian acute leukemia virus MC29: Conserved and variable RNA sequences and recombination with helper virus. Virology, 1979, 99, 121-134.	1.1	31
62	Genetic analysis of the defectiveness in strain MC29 avian leukosis virus. Virology, 1978, 88, 213-221.	1.1	41
63	Defectiveness of avian myelocytomatosis virus MC29: Isolation of long-term nonproducer cultures and analysis of virus-specific polypeptide synthesis. Virology, 1977, 82, 431-448.	1.1	320
64	Biological and biochemical studies on the inactivation of avian oncoviruses by ultraviolet irradiation. Virology, 1977, 77, 689-704.	1.1	22
65	13C-NMR Studies of the Membrane Structure of Enveloped Virions (Vesicular Stomatitis Virus). Hoppe-Seyler's Zeitschrift Für Physiologische Chemie, 1976, 357, 905-916.	1.7	20
66	Carbon-13 nuclear magnetic resonance studies on the lipid organization in enveloped virions (vesicular stomatitis virus). Biochemistry, 1975, 14, 2841-2847.	1.2	35
67	Studies on the Desaturation of Sphinganine. Ceramide and Sphingomyelin Metabolism in the Rat and in BHK 21 Cells in Tissue Culture. Hoppe-Seyler's Zeitschrift Für Physiologische Chemie, 1974, 355, 911-923.	1.7	32
68	Stereospecificities in the Metabolic Reactions of the four Isomeric Sphinganines (Dihydrosphingosines) in Rat Liver. Hoppe-Seyler's Zeitschrift Für Physiologische Chemie, 1973, 354, 169-181.	1.7	61
69	Metabolism of Sphingosine Bases, XVII. Stereospecificities in the Introduction of the 4t-Double Bond into Sphinganine yielding 4t-Sphingenine (Sphingosine). Hoppe-Seyler's Zeitschrift Für Physiologische Chemie, 1971, 352, 1531-1544.	1.7	15