Alexis Laurent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7394048/publications.pdf Version: 2024-02-01

ALEVIS | ALIDENT

#	Article	IF	CITATIONS
1	Review of LCA studies of solid waste management systems – Part I: Lessons learned and perspectives. Waste Management, 2014, 34, 573-588.	3.7	529
2	ldentifying best existing practice for characterization modeling in life cycle impact assessment. International Journal of Life Cycle Assessment, 2013, 18, 683-697.	2.2	515
3	Review of LCA studies of solid waste management systems – Part II: Methodological guidance for a better practice. Waste Management, 2014, 34, 589-606.	3.7	326
4	Limitations of Carbon Footprint as Indicator of Environmental Sustainability. Environmental Science & Technology, 2012, 46, 4100-4108.	4.6	284
5	IMPACT World+: a globally regionalized life cycle impact assessment method. International Journal of Life Cycle Assessment, 2019, 24, 1653-1674.	2.2	262
6	Normalisation and weighting in life cycle assessment: quo vadis?. International Journal of Life Cycle Assessment, 2017, 22, 853-866.	2.2	178
7	Life cycle assessment of onshore and offshore wind energy-from theory to application. Applied Energy, 2016, 180, 327-337.	5.1	159
8	Global environmental losses of plastics across their value chains. Resources, Conservation and Recycling, 2019, 151, 104459.	5.3	152
9	LCIA framework and cross-cutting issues guidance within the UNEP-SETAC Life Cycle Initiative. Journal of Cleaner Production, 2017, 161, 957-967.	4.6	141
10	Carbon footprint as environmental performance indicator for the manufacturing industry. CIRP Annals - Manufacturing Technology, 2010, 59, 37-40.	1.7	109
11	IMPACT 2002+, ReCiPe 2008 and ILCD's recommended practice for characterization modelling in life cycle impact assessment: a case study-based comparison. International Journal of Life Cycle Assessment, 2014, 19, 1007-1021.	2.2	107
12	Life cycle assessments of aquaculture systems: a critical review of reported findings with recommendations for policy and system development. Reviews in Aquaculture, 2019, 11, 1061-1079.	4.6	102
13	Use of digestate from a decentralized on-farm biogas plant as fertilizer in soils: An ecotoxicological study for future indicators in risk and life cycle assessment. Waste Management, 2016, 49, 378-389.	3.7	98
14	Environmental impacts of electricity generation at global, regional and national scales in 1980–2011: what can we learn for future energy planning?. Energy and Environmental Science, 2015, 8, 689-701.	15.6	93
15	LCâ€IMPACT: A regionalized life cycle damage assessment method. Journal of Industrial Ecology, 2020, 24, 1201-1219.	2.8	80
16	Framework for estimating toxic releases from the application of manure on agricultural soil: National release inventories for heavy metals in 2000–2014. Science of the Total Environment, 2017, 590-591, 452-460.	3.9	76
17	Towards integrating the ecosystem services cascade framework within the Life Cycle Assessment (LCA) cause-effect methodology. Science of the Total Environment, 2019, 690, 1284-1298.	3.9	70
18	Framework for quantifying environmental losses of plastics from landfills. Resources, Conservation and Recycling, 2020, 161, 104914.	5.3	66

ALEXIS LAURENT

#	Article	IF	CITATIONS
19	Soil quality index: Exploring options for a comprehensive assessment of land use impacts in LCA. Journal of Cleaner Production, 2019, 215, 63-74.	4.6	64
20	Normalization in EDIP97 and EDIP2003: updated European inventory for 2004 and guidance towards a consistent use in practice. International Journal of Life Cycle Assessment, 2011, 16, 401-409.	2.2	62
21	Environmental hotspots of lactic acid production systems. GCB Bioenergy, 2020, 12, 19-38.	2.5	61
22	Methodological review and detailed guidance for the life cycle interpretation phase. Journal of Industrial Ecology, 2020, 24, 986-1003.	2.8	61
23	Analysis of current research addressing complementary use of life-cycle assessment and risk assessment for engineered nanomaterials: have lessons been learned from previous experience with chemicals?. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	58
24	Ethical aspects of life cycle assessments of diets. Food Policy, 2016, 59, 139-151.	2.8	57
25	Overview and recommendations for regionalized life cycle impact assessment. International Journal of Life Cycle Assessment, 2019, 24, 856-865.	2.2	57
26	Life Cycle Impact Assessment. , 2018, , 167-270.		56
27	Ecodesign perspectives of thin-film photovoltaic technologies: A review of life cycle assessment studies. Solar Energy Materials and Solar Cells, 2016, 156, 2-10.	3.0	54
28	LCA of aquaculture systems: methodological issues and potential improvements. International Journal of Life Cycle Assessment, 2019, 24, 324-337.	2.2	52
29	Sharing the safe operating space: Exploring ethical allocation principles to operationalize the planetary boundaries and assess absolute sustainability at individual and industrial sector levels. Journal of Industrial Ecology, 2021, 25, 6-19.	2.8	52
30	Development of Comparative Toxicity Potentials of TiO ₂ Nanoparticles for Use in Life Cycle Assessment. Environmental Science & Technology, 2017, 51, 4027-4037.	4.6	51
31	Life cycle assessment integration into energy system models: An application for Power-to-Methane in the EU. Applied Energy, 2020, 259, 114160.	5.1	50
32	Impacts of NMVOC emissions on human health in European countries for 2000–2010: Use of sector-specific substance profiles. Atmospheric Environment, 2014, 85, 247-255.	1.9	48
33	Normalization references for Europe and North America for application with USEtoxâ,,¢ characterization factors. International Journal of Life Cycle Assessment, 2011, 16, 728-738.	2.2	44
34	Potentials and limitations of footprints for gauging environmental sustainability. Current Opinion in Environmental Sustainability, 2017, 25, 20-27.	3.1	44
35	Ecodesign of organic photovoltaic modules from Danish and Chinese perspectives. Energy and Environmental Science, 2015, 8, 2537-2550.	15.6	40
36	Environmental Impacts of Future Urban Deployment of Electric Vehicles: Assessment Framework and Case Study of Copenhagen for 2016–2030. Environmental Science & Technology, 2017, 51, 13995-14005.	4.6	37

ALEXIS LAURENT

#	Article	IF	CITATIONS
37	Cost-competitiveness of organic photovoltaics for electricity self-consumption at residential buildings: A comparative study of Denmark and Greece under real market conditions. Applied Energy, 2017, 208, 471-479.	5.1	33
38	The role of life cycle engineering (LCE) in meeting the sustainable development goals – report from a consultation of LCE experts. Journal of Cleaner Production, 2019, 230, 378-382.	4.6	33
39	Life cycle assessment in corporate sustainability reporting: Global, regional, sectoral, and companyâ€level trends. Business Strategy and the Environment, 2018, 27, 1751-1764.	8.5	30
40	Power generation from chemically cleaned coals: do environmental benefits of firing cleaner coal outweigh environmental burden of cleaning?. Energy and Environmental Science, 2015, 8, 2435-2447.	15.6	28
41	Building national emission inventories of toxic pollutants in Europe. Environment International, 2019, 130, 104785.	4.8	26
42	Environmental impacts of existing and future aquaculture production: Comparison of technologies and feed options in Singapore. Aquaculture, 2021, 532, 736001.	1.7	26
43	Quantification and valuation of ecosystem services in life cycle assessment: Application of the cascade framework to rice farming systems. Science of the Total Environment, 2020, 747, 141278.	3.9	24
44	Scope Definition. , 2018, , 75-116.		21
45	Normalisation. LCA Compendium, 2015, , 271-300.	0.8	21
46	Mapping and characterization of LCA networks. International Journal of Life Cycle Assessment, 2013, 18, 812-827.	2.2	19
47	Building and Characterizing Regional and Global Emission Inventories of Toxic Pollutants. Environmental Science & Technology, 2014, 48, 5674-5682.	4.6	19
48	Economic and environmental performances of organic photovoltaics with battery storage for residential self-consumption. Applied Energy, 2019, 256, 113977.	5.1	19
49	Learning-by-doing: experience from 20Âyears of teaching LCA to future engineers. International Journal of Life Cycle Assessment, 2019, 24, 553-565.	2.2	19
50	Which Electrode Materials to Select for More Environmentally Friendly Organic Photovoltaics?. Advanced Engineering Materials, 2016, 18, 490-495.	1.6	18
51	Evaluating climate change mitigation potential of hydrochars: compounding insights from three different indicators. GCB Bioenergy, 2018, 10, 230-245.	2.5	18
52	Life Cycle Inventory Analysis. , 2018, , 117-165.		17
53	Relationships between plant species richness and soil pH at the level of biome and ecoregion in Brazil. Ecological Indicators, 2019, 98, 266-275.	2.6	16
54	Teaching life cycle assessment in higher education. International Journal of Life Cycle Assessment, 2021, 26, 511-527.	2.2	16

ALEXIS LAURENT

#	Article	IF	CITATIONS
55	Stepwise guidance for data collection in the life cycle inventory (LCI) phase: Building technology-related LCI blocks. Journal of Cleaner Production, 2022, 366, 132903.	4.6	16
56	Sustainability and LCA in Engineering Education – A Course Curriculum. Procedia CIRP, 2018, 69, 627-632.	1.0	15
57	Are aquaculture growth policies in high-income countries due diligence or illusionary dreams? Foreseeing policy implications on seafood production in Singapore. Food Policy, 2020, 93, 101885.	2.8	14
58	Effect factors of terrestrial acidification in Brazil for use in Life Cycle Impact Assessment. International Journal of Life Cycle Assessment, 2019, 24, 1105-1117.	2.2	13
59	Implications of LCA and LCIA choices on interpretation of results and on decision support. International Journal of Life Cycle Assessment, 2020, 25, 2311-2314.	2.2	13
60	Global environmental mapping of the aeronautics manufacturing sector. Journal of Cleaner Production, 2021, 297, 126603.	4.6	13
61	LCA of Energy Systems. , 2018, , 633-668.		11
62	Environmental sustainability of future aquaculture production: Analysis of Singaporean and Norwegian policies. Aquaculture, 2022, 549, 737717.	1.7	11
63	Environmental impacts of electricity self-consumption from organic photovoltaic battery systems at industrial facilities in Denmark. CIRP Annals - Manufacturing Technology, 2017, 66, 45-48.	1.7	10
64	Human health no-effect levels of TiO2 nanoparticles as a function of their primary size. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	10
65	LCA of Solid Waste Management Systems. , 2018, , 887-926.		10
66	Contribution of circular economy strategies to climate change mitigation: Generic assessment methodology with focus on developing countries. Journal of Industrial Ecology, 2021, 25, 1382-1397.	2.8	9
67	Renewable Energy and Carbon Management in the Cradleâ€toâ€Cradle Certification: Limitations and Opportunities. Journal of Industrial Ecology, 2018, 22, 760-772.	2.8	9
68	National inventories of land occupation and transformation flows in the world for land use impact assessment. International Journal of Life Cycle Assessment, 2019, 24, 1333-1347.	2.2	8
69	Identification of dissipative emissions for improved assessment of metal resources in life cycle assessment. Journal of Industrial Ecology, 0, , .	2.8	8
70	Terrestrial Ecotoxic Impacts Stemming from Emissions of Cd, Cu, Ni, Pb and Zn from Manure: A Spatially Differentiated Assessment in Europe. Sustainability, 2018, 10, 4094.	1.6	6
71	Globally differentiated effect factors for characterising terrestrial acidification in life cycle impact assessment. Science of the Total Environment, 2021, 761, 143280.	3.9	6
72	Building national emission inventories for the energy sector: Implications for life cycle assessment and nations environmental footprinting. Science of the Total Environment, 2020, 708, 135119.	3.9	4

Alexis Laurent

#	Article	IF	CITATIONS
73	Life Cycle Risks and Impacts of Nanotechnologies. , 2013, , 213-278.		4
74	Advancing Life Cycle Engineering to meet United Nation's Sustainable Development Goals. Procedia CIRP, 2018, 69, 1-2.	1.0	3
75	Assessing the sustainability implications of research projects against the 17 UN sustainable development goals. Procedia CIRP, 2020, 90, 148-153.	1.0	3
76	Improving environmental performances of integrated bladed rotors for aircraft. CIRP Annals - Manufacturing Technology, 2022, 71, 13-16.	1.7	3
77	Defining and Mapping LCA Networks: Initial Results. , 2012, , 137-141.		1