Lingpeng Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7393695/publications.pdf

Version: 2024-02-01

93 papers

1,141 citations

20 h-index 28 g-index

93 all docs 93
docs citations

93 times ranked 726 citing authors

#	Article	IF	CITATIONS
1	Electronic and Photovoltaic Properties of Superlattices Constructed by Organic–Inorganic Perovskites: a Theoretical Perspective. ACS Applied Energy Materials, 2022, 5, 2430-2441.	5.1	3
2	Halogen Bond Catalysis on Carbonyl–Olefin <scp>Ringâ€Closing</scp> Metathesis Reaction: Comparison with Lewis Acid Catalysis. Chinese Journal of Chemistry, 2022, 40, 1275-1284.	4.9	4
3	Mechanism and origin of the stereoselectivity of manganese-catalyzed hydrosilylation of alkynes: a DFT study. Catalysis Science and Technology, 2022, 12, 2649-2658.	4.1	6
4	Photocatalytic Reduction of CO ₂ with H ₂ O Mediated by Ce-Tailored Bismuth Oxybromide Surface Frustrated Lewis Pairs. ACS Catalysis, 2022, 12, 4016-4025.	11.2	95
5	Mechanism, Stereoselectivity, and Role of O ₂ in Aza-Diels–Alder Reactions Catalyzed by Dinuclear Molybdenum Complexes: A Theoretical Study. Inorganic Chemistry, 2022, 61, 4714-4724.	4.0	3
6	<scp> BF ₃ â€Catalyzed </scp> Mukaiyama aldol reaction of acetaldehyde with 2â€siloxyâ€1â€propene. Journal of Computational Chemistry, 2022, 43, 402-412.	3.3	1
7	Charge-regulated regioselective mechanism of bicobalt-catalyzed hydrogermylation of alkynes: DFT investigation. Molecular Catalysis, 2022, 526, 112379.	2.0	4
8	Mechanistic insights into the reaction Cp2Nb(CO)H (Cp =â€T̂·5-C5H5) with acetylenedicarboxylic acid (ADCA): DFT studies. Inorganica Chimica Acta, 2021, 514, 119990.	2.4	0
9	Competition and conversion between pnicogen bonds and hydrogen bonds involving prototype organophosphorus compounds. Physical Chemistry Chemical Physics, 2021, 23, 18794-18805.	2.8	2
10	Improving the stability of perovskite by covering graphene on <scp> FAPbI ₃ </scp> surface. International Journal of Energy Research, 2021, 45, 10808-10820.	4.5	7
11	Comparison of Anionâ€Anion Halogen Bonds with Neutralâ€Anion Halogen Bonds in the Gas Phase and Polar Solvents. ChemPlusChem, 2021, 86, 232-240.	2.8	15
12	Control of the Regioselectivity of Alkyne Hydrostannylation by Tuning the Metal Pair of Heterobimetallic Catalysts: A Theoretical Study. Organometallics, 2021, 40, 654-662.	2.3	6
13	Mechanism and regioselectivity of [Cu-Fe] heterobimetallic-catalyzed hydroboration of pyridines: DFT investigation. Molecular Catalysis, 2021, 511, 111722.	2.0	4
14	Mechanism and Stereoselectivity of the Elementometalation Process of Activated Alkyne RCCR(RCO 2) T	ijĘŢQq0 0	0 ₇ rgBT /Over
15	Electronic structure of triangular M ₃ (M = B, Al, Ga): nonclassical three-center two electron \ddot{l} bond and \ddot{l} delocalization. Physical Chemistry Chemical Physics, 2020, 22, 18071-18077.	2.8	5
16	Nb(i PrNPMe 2) 3 Fe–PMe 3 : A potential high reactivity heterobimetallic catalyst for acetylene cycloadditions. Applied Organometallic Chemistry, 2020, 34, e5966.	3.5	4
17	Substituent-regulated mechanism on reaction Cp2NbH3 (Cp = η5-C5H5) with RCî€,CR (R = COOMe and Me). Dalton Transactions, 2020, 49, 15376-15384.	3.3	0
18	Stereoselectivity and nonmigratory insertion mechanism of dimethylacetylene dicarboxylate into metalloceneâ \in hydride of Cp 2 M(L)H [Cp = \hat{I} 5 $\hat{a}\in$ C 5 H 5; M = Nb, V; L = CO, P (OMe) 3]: A DFT study. Applied Organometallic Chemistry, 2020, 34, e5601.	3.5	2

#	Article	IF	CITATIONS
19	Reaction Mechanism and Kinetics study on Addition of CCl 4 to 1â€hexene Catalyzed by Moâ€Mo Quintuplyâ€bond. Applied Organometallic Chemistry, 2020, 34, e5726.	3.5	2
20	The roles of native defects and transition metal additives in the dehydrogenation mechanism of Mg(AlH4)2. International Journal of Hydrogen Energy, 2020, 45, 17625-17636.	7.1	1
21	Effect of Sr substitution on the property and stability of CH ₃ NH ₃ Snl ₃ perovskite: A firstâ€principles investigation. International Journal of Energy Research, 2020, 44, 5765-5778.	4.5	19
22	Enhancing the stability of perovskites by constructing heterojunctions of graphene/MASnI ₃ . Physical Chemistry Chemical Physics, 2020, 22, 3724-3733.	2.8	6
23	Effects of halogen substitutions on the properties of CH3NH3Sn0.5Pb0.5I3 perovskites. Computational Materials Science, 2020, 177, 109576.	3.0	5
24	Organocatalysis by Halogen, Chalcogen, and Pnictogen Bond Donors in Halide Abstraction Reactions: An Alternative to Hydrogen Bond-Based Catalysis. Journal of Physical Chemistry A, 2020, 124, 3815-3824.	2.5	23
25	Investigation on the intramolecular proton transfer mechanism of [Cp2MHn](Cp = C5H5, M = Mo, W, R	ke;) ₄ Tj ETQd	q <u>1</u> 1 0.78 <mark>43</mark>
26	Aromaticity analysis of fused heterometallacycles containing M M(M = Cr, Mo and W) quintuple bond. Chemical Physics Letters, 2019, 731, 136600.	2.6	7
27	The mechanism of ringâ€opening polymerization of Lâ€lactide by ICl ₃ catalysts: Halogen bond catalysis or participating in reactions?. Journal of Computational Chemistry, 2019, 40, 2827-2833.	3.3	7
28	Coinage metal dimers as the noncovalent interaction acceptors: study of the $\ddot{l}f$ -lump interactions. Physical Chemistry Chemical Physics, 2019, 21, 21152-21161.	2.8	11
29	Comparison of pnicogen and tetrel bonds in complexes containing CX2 carbenes (X = F, Cl, Br, OH,) Tj ETQq1 1 0.	784314 rg 2.8	ßT/Overloc
30	Predicting the halogenâ€ <i>n</i> (<i>n</i> = 3â€"6) synthons to form the "windmill†pattern bonding based on the halogenâ€bonded interactions. Journal of Computational Chemistry, 2019, 40, 1219-1226.	3.3	13
31	Insight into the Effects of Electrostatic Potentials on the Conversion Mechanism of the Hydrogen-Bonded Complexes and Carbon-Bonded Complexes: An Ab Initio and Quantum Theory of "Atoms in Molecules―Investigation. ACS Omega, 2019, 4, 231-241.	3.5	3
32	Nature of MoH···I bonds in Cp ₂ Mo(L)H···Iâ€C≡Câ€R Complexes (L=H, CN, PPh _{2<td>ıb>,) Tj ETÇ 3.5</td><td>Qq0 0 0 rgB1 4</td>}	ıb>,) Tj ETÇ 3.5	Qq0 0 0 rgB1 4
33	CIˉ as the halogen bond acceptor: studies on strong halogen bonds. Structural Chemistry, 2018, 29, 503-511.	2.0	1
34	Insight into the Ï€â€hole···πâ€electrons tetrel bonds between F ₂ ZO (Z = C, Si, Ge) and unsaturated hydrocarbons. International Journal of Quantum Chemistry, 2018, 118, e25521.	2.0	13
35	Nature of non-nuclear (3, â^³3) Ï€-attractor and Ï€-bonding: Theoretical analysis on Ï€-electron density. Chemical Physics Letters, 2018, 691, 347-350.	2.6	2

Stability and donor-acceptor bond in dinuclear organometallics CpM1â \in "M2Cl3 (M1, M2â \in ‰=â \in ‰B, Al, Ga, In; Cpâ \in ‰=â \in ‰i) Tj ETCl3 (M1, M2â \in ‰=â \in ‰B, Al, Ga, In; Cpâ \in ‰=â \in 3‰i) Tj ETCl3 (M1, M2â \in ‰=â \in 3‰B, Al, Ga, In; Cpâ \in ‰=â \in 3‰i) Tj ETCl3 (M1, M2â \in ‰=â \in 3‰B, Al, Ga, In; Cpâ \in 3‰=â \in 3‰i) Tj ETCl3 (M1, M2â \in 3‰=â \in 3‰B, Al, Ga, In; Cpâ \in 3‰=â \in 3‰i) Tj ETCl3 (M1, M2â \in 3‰=â \in 3‰B, Al, Ga, In; Cpâ \in 3‰=â \in 3‰i) Tj ETCl3 (M1, M2â \in 3‰=â \in 3‰B, Al, Ga, In; Cpâ \in 3‰=â \in 3‰i) Tj ETCl3 (M1, M2â \in 3‰=â \in 3‰B, Al, Ga, In; Cpâ \in 3‰=â \in 3‰i) Tj ETCl3 (M1, M2â \in 3‰=â \in 3‰B, Al, Ga, In; Cpâ \in 3‰=â \in 3‰i) Tj ETCl3 (M1, M2â \in 3‰) Tj ETCl3 (M1

3

36

#	Article	IF	CITATIONS
37	The enhancing effects of molecule X (X = PH ₂ Cl, SHCl, ClCl) on chalcogen–chalcogen interactions in cyclic trimers Y···Y··X (Y = SHCl, SeHCl). International Journal of Quantum Chemis 2017, 117, e25354.	tr zy., 0	4
38	The ground and excited-state electronic structures of sandwich compounds $Cp2(ME)2$ contain an (ME)2 four-membered ring ($Cp = C5H5$; $M = Ni$, Pd , Pt ; $E = O$, S , Se , Te). New Journal of Chemistry, 2017, 41, 12028-12034.	2.8	3
39	Insight into π-hole interactions containing the inorganic heterocyclic compounds S2N2/SN2P2. Journal of Molecular Modeling, 2017, 23, 233.	1.8	2
40	Mechanism and kinetics for the reactions of methacrolein and methyl vinyl ketone with HO ₂ radical. New Journal of Chemistry, 2017, 41, 7714-7722.	2.8	5
41	Inorganic benzenes as the noncovalent interaction donor: a study of the π-hole interactions. Journal of Molecular Modeling, 2017, 23, 335.	1.8	2
42	Chalcogen- and halogen-bonds involving SX2 ($X = F$, Cl, and Br) with formaldehyde. Journal of Molecular Modeling, 2016, 22, 167.	1.8	4
43	The mutual influence between Ï€-hole pnicogen bonds and σ-hole halogen bonds in complexes of PO2Cl and XCN/C6H6 (XÂ=ÂF, Cl, Br). Structural Chemistry, 2016, 27, 1427-1437.	2.0	18
44	Insight into the pseudo Ï€-hole interactions in the M ₃ H ₆ â<¯(NCF) _n (M) Tj ET	Г <u>Q</u> q0 0 0 r	gBT /Overloo
45	Comparative studies on group III $led{if}$ -hole and $led{led{ie}}$ -hole interactions. Journal of Computational Chemistry, 2016, 37, 1321-1327.	3.3	49
46	Intriguing E…E' bonding in [Nap(EPh)(E'Ph)] ^{•+} (E, E'=O, S, Se, Te). International Journal of Quantum Chemistry, 2016, 116, 1090-1096.	2.0	3
47	Dinuclear first-row transition metal–(C8Me6)2complexes: metal–metal and metal–ligand bonds determined by the d electron configuration of the metal atom. New Journal of Chemistry, 2016, 40, 1988-1996.	2.8	9
48	Comparison of the directionality of the halogen, hydrogen, and lithium bonds between HOOOH and XF (XÂ=ÂCl, Br, H, Li). Journal of Molecular Modeling, 2016, 22, 52.	1.8	4
49	Mutual enhancing effects of the if -hole interactions and halogen/hydrogen-bonded interactions in the iodine-ylide containing complexes. Structural Chemistry, 2016, 27, 927-937.	2.0	4
50	Improvement in dehydrogenation performance ofÂMg(BH4)2·2NH3 doped with transition metal: First-principles investigation. International Journal of Hydrogen Energy, 2015, 40, 8721-8731.	7.1	15
51	A comprehensive analysis of P···π pnicogen bonds: substitution effects and comparison with Br···π halogen bonds. Journal of Molecular Modeling, 2015, 21, 143.	1.8	24
52	Understanding the Properties of Inorganic Benzenes Based on π-Electron Densities. Journal of Physical Chemistry A, 2015, 119, 2091-2097.	2.5	15
53	Influences of the substituents on the M–M bonding in Cp ₄ Al ₄ and Cp ₂ M ₂ X ₂ (M = B, Al, Ga; Cp = C ₅ H ₅ , X =) Tj ETC	շ գ 131 0.78 	3 43 14 rgBT
	The competition of Yâc o and Xâc n halogen bonds to enhance the group V if-hole interaction in the		

The competition of Yâcō and Xâc̄n halogen bonds to enhance the group V Ïf-hole interaction in the NCYâc̄oPH₃âc̄NCX and OPH₃âc̄NCXâc̄NCY (X, Yi£¾F, Cl, and Br) complexes. Josuanal of 27 Computational Chemistry, 2015, 36, 1349-1358.

#	Article	IF	CITATIONS
55	Influences of Al, Ti and Nb doping on the structure and hydrogen storage property of Mg(BH 4) 2 (001) surface – A theoretical study. International Journal of Hydrogen Energy, 2015, 40, 10516-10526.	7.1	12
56	Enhancing Ïf/Ï€-type copper(<scp>i</scp>)â <rthiophene (metal="Li," 1283-1291.<="" 2015,="" 44,="" by="" ca,="" dalton="" doping="" interactions="" k,="" metal="" na,="" sc).="" td="" transactions,=""><td>3.3</td><td>12</td></rthiophene>	3.3	12
57	The cooperativity between the σ-hole and Ï€-hole interactions in the ClO···XONO2/XONO···NH3 (XÂ=ÂCl, complexes. Structural Chemistry, 2015, 26, 213-221.	Br. I) 2.0	29
58	Influence of titanium and nickel dopants on the dehydrogenation properties of Mg(AlH4)2: Electronic structure mechanisms. International Journal of Hydrogen Energy, 2014, 39, 9276-9287.	7.1	8
59	A comparative study of some lithium and hydrogen-bonded complexes: <i>Ab initio</i> and QTAIM studies. International Journal of Quantum Chemistry, 2014, 114, 400-408.	2.0	4
60	Regulatory factors and the nature of $Cu\hat{a}^{-}Cu$ interaction in copper(i) complexes with NHC and NHCP ligands: a theoretical assessment. New Journal of Chemistry, 2014, 38, 5786-5792.	2.8	5
61	Effects of Mg and Al doping on the electronic structure and dehydrogenation of LiBH4·NH3. International Journal of Hydrogen Energy, 2014, 39, 17144-17152.	7.1	8
62	The enhancing effects of group V \parallel f-hole interactions on the Fâ \ll O halogen bond. Physical Chemistry Chemical Physics, 2014, 16, 19282-19289.	2.8	29
63	N···I Halogen Bonding Interactions: Influence of Lewis Bases on Their Strength and Characters. Journal of Physical Chemistry A, 2014, 118, 7058-7065.	2.5	27
64	Nature of the M–M bonding (MÂ=ÂCr, Mo, and W) in [CpM(CO)3]2: Covalent single bond or noncovalent interaction?. Journal of Organometallic Chemistry, 2014, 769, 106-111.	1.8	7
65	Enhancing effects of hydrogen/halogen bonds on $\ddot{l}f$ -hole interactions involving ylide. Journal of Molecular Modeling, 2014, 20, 2282.	1.8	4
66	Influence of Cr/Zr doping on the electronic structure and hydrogen storage properties of the Mg2Ni (010) surface: A first principles study. Journal of Alloys and Compounds, 2014, 601, 280-288.	5.5	7
67	Interplay between halogen bonds and hydrogen bonds in OH/SH···HOX···HY (X = Cl, Br; Y = F, Cl, Br) complexes. Journal of Molecular Modeling, 2013, 19, 1069-1077.	1.8	21
68	First-principles study of hydrogen vacancies in lithium amide doped with titanium and niobium. International Journal of Hydrogen Energy, 2013, 38, 11303-11312.	7.1	9
69	Discovery of $\ddot{l}f$ -hole interactions involving ylides. Journal of Molecular Modeling, 2013, 19, 4887-4895.	1.8	8
70	Metal–Metal and Metal–Ligand Bonds in (η ⁵ -C ₅ H ₅) ₂ M ₂ (M = Be, Mg, Ca, Ni, Cu, Zn). Organometallics, 2013, 32, 1060-1066.	2.3	43
71	Influence of the Liâ‹â‹ï∈ Interaction on the H/Xâ‹â‹â‹ï∈ Interactions in HOLiâ‹â‹C ₆ H ₆ â‹â‹â‹a‹HOX/XOH (X=F, Cl, Br, I) Complexes. ChemPhysChem; 1591-1600.	2013, 14 ,	, 18
72	Electron Structure of Arx′ZnZnArx′ (Arx′ = C ₆ H ₃ -2,) Tj ETQq0 0 0 rgBT /Overloo	ck 10 Tf 50 2.3) 67 Td (6-(C

Hydrogen/Sodium Atoms on Zn–Zn Interactions. Organometallics, 2012, 31, 6582-6588.

5

#	Article	IF	CITATIONS
73	Assessment of intermolecular interactions at three sites of the arylalkyne in phenylacetyleneâ€containing lithiumâ€bonded complexes: Ab initio and QTAIM studies. Journal of Computational Chemistry, 2012, 33, 1321-1327.	3.3	15
74	Substituent effects on the intramolecular hydrogen bond in 1-hydroxyanthraquinone: AIM and NBO analyses. Structural Chemistry, 2012, 23, 1233-1240.	2.0	13
75	Computational studies of lf -type weak interactions between NCO/NCS radicals and XY(X = H, Cl; Y = F, Cl,) Tj ETC)q] 1 0.78	34314 rgB1 /(
76	Cooperativity between S···΀ and Rg···π in the OCS···C ₆ H ₆ ····Rg (Rg = He	e, Ne, Ar, a 2.5	ınd) Tj ETQqC
77	A computational study on the nature of the halogen bond between sulfides and dihalogen molecules. Structural Chemistry, 2011, 22, 567-576.	2.0	40
78	Insight into the lithium/hydrogen bonding in (CH2)2XLiY/HY (X: C=CH2, O, S; Y=F, Cl, Br) complexes. Journal of Molecular Modeling, 2011, 17, 757-767.	1.8	26
79	Insight into the nature of the interactions of furan and thiophene with hydrogen halides and lithium halides: ab initio and QTAIM studies. Journal of Molecular Modeling, 2011, 17, 2907-2918.	1.8	24
80	Ab initio and AIM studies on typical Ï€â€ŧype and pseudoâ€Ï€â€ŧype halogen bonds: Comparison with hydrogen bonds. International Journal of Quantum Chemistry, 2011, 111, 3725-3740.	2.0	20
81	AlM and ELF Analyses of Halogen Bonding in NCS:BrCl Complexes. Chinese Journal of Chemistry, 2011, 29, 2416-2420.	4.9	0
82	The Role of Molecular Electrostatic Potentials in the Formation of a Halogen Bond in Furanâ‹â‹â‹XY and Thiopheneâ‹â‹â‹XY Complexes. ChemPhysChem, 2011, 12, 1080-1087.	2.1	24
83	The Role of Ï€ Electrons in the Formation of Benzeneâ€Containing Lithiumâ€Bonded Complexes. ChemPhysChem, 2011, 12, 3584-3590.	2.1	19
84	First-principles studies of the structures and properties of Al- and Ag-substituted Mg2Ni alloys and their hydrides. International Journal of Hydrogen Energy, 2010, 35, 10349-10358.	7.1	23
85	Theoretical Studies on the Isomerizations of CH ₃ NO ₂ . Chinese Journal of Chemistry, 2009, 27, 1025-1030.	4.9	0
86	Topological Characteristics of Electron Density Distribution in SSXY â†' XSSY (X or Y = F, Cl, Br, I) Isomerization Reactions. Journal of Physical Chemistry A, 2007, 111, 9093-9101.	2.5	27
87	Theoretical Investigation on Stability and Isomerizations of CH3SO Isomers. Journal of Physical Chemistry A, 2007, 111, 2343-2350.	2.5	23
88	Topological Characterization of HXO2 ($X = Cl$, Br, I) Isomerization. Journal of Physical Chemistry A, 2007, 111, 1530-1535.	2.5	17
89	A DFT study of the generation of interstellar species XN (X=Cl, and Br) activated by molecular sieve clusters. Chemical Physics Letters, 2004, 400, 394-400.	2.6	5
90	AIM Studies on Reactions FNCX â†' FXCN (X = O, S, and Se). Journal of Physical Chemistry A, 2004, 108, 10527-10534.	2.5	14

LINGPENG MENG

#	Article	IF	CITATIONS
91	Studies on Reactions INCX â†' IXCN (X = O, S, and Se). Inorganic Chemistry, 2004, 43, 5311-5320.	4.0	26
92	Topological studies on IRC paths of X+H2?XH+H reactions. Journal of Computational Chemistry, 1997, 18, 1167-1174.	3.3	13
93	Theoretical investigation on the nature of substituted benzeneâc AuX interactions: covalent or noncovalent?. New Journal of Chemistry, 0, , .	2.8	2