James L Hougland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7393217/publications.pdf

Version: 2024-02-01

516710 477307 42 985 16 29 citations g-index h-index papers 46 46 46 1005 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A closer look at alcoholâ€induced changes in the ghrelin system: novel insights from preclinical and clinical data. Addiction Biology, 2022, 27, e13033.	2.6	17
2	Temperature-Responsive Nano-Biomaterials from Genetically Encoded Farnesylated Disordered Proteins. ACS Applied Bio Materials, 2022, 5, 1846-1856.	4.6	6
3	Engineering reversible cell–cell interactions using enzymatically lipidated chemically self-assembled nanorings. Chemical Science, 2021, 12, 331-340.	7.4	17
4	Ghrelin octanoylation by ghrelin <i>O</i> -acyltransferase: protein acylation impacting metabolic and neuroendocrine signalling. Open Biology, 2021, 11, 210080.	3.6	12
5	MALDI-MS Analysis of Peptide Libraries Expands the Scope of Substrates for Farnesyltransferase. International Journal of Molecular Sciences, 2021, 22, 12042.	4.1	7
6	Ghrelin Signaling: GOAT and GHS-R1a Take a LEAP in Complexity. Trends in Endocrinology and Metabolism, 2020, 31, 107-117.	7.1	48
7	An overview of ghrelin <i>O</i> -acyltransferase inhibitors: a literature and patent review for 2010-2019. Expert Opinion on Therapeutic Patents, 2020, 30, 581-593.	5.0	14
8	Protein Farnesyltransferase Catalyzes Unanticipated Farnesylation and Geranylgeranylation of Shortened Target Sequences. Biochemistry, 2020, 59, 1149-1162.	2.5	16
9	Mechanisms of CaaX Protein Processing: Protein Prenylation by FTase and GGTase-I. , 2020, , 497-527.		O
10	The ghrelin O-acyltransferase structure reveals a catalytic channel for transmembrane hormone acylation. Journal of Biological Chemistry, 2019, 294, 14166-14174.	3.4	26
11	Ghrelin octanoylation by ghrelin <i>O</i> -acyltransferase: Unique protein biochemistry underlying metabolic signaling. Biochemical Society Transactions, 2019, 47, 169-178.	3.4	24
12	Biochemical Assays for Ghrelin Acylation and Inhibition of Ghrelin O-Acyltransferase. Methods in Molecular Biology, 2019, 2009, 227-241.	0.9	11
13	Efficient farnesylation of an extended C-terminal C(x)3X sequence motif expands the scope of the prenylated proteome. Journal of Biological Chemistry, 2018, 293, 2770-2785.	3.4	33
14	Functional group and stereochemical requirements for substrate binding by ghrelin O-acyltransferase revealed by unnatural amino acid incorporation. Bioorganic Chemistry, 2018, 79, 98-106.	4.1	10
15	Protein Isoprenylation in Yeast Targets COOH-Terminal Sequences Not Adhering to the CaaX Consensus. Genetics, 2018, 210, 1301-1316.	2.9	16
16	Synthetic Triterpenoid Inhibition of Human Ghrelin <i>O</i> -Acyltransferase: The Involvement of a Functionally Required Cysteine Provides Mechanistic Insight into Ghrelin Acylation. Biochemistry, 2017, 56, 919-931.	2.5	28
17	Simultaneous Analysis of a Non-Lipidated Protein and Its Lipidated Counterpart: Enabling Quantitative Investigation of Protein Lipidation's Impact on Cellular Regulation. Analytical Chemistry, 2017, 89, 13502-13507.	6.5	6
18	Ghrelin Octanoylation Is Completely Stabilized in Biological Samples by Alkyl Fluorophosphonates. Endocrinology, 2016, 157, 4330-4338.	2.8	18

#	Article	IF	CITATIONS
19	The octanoylated energy regulating hormone ghrelin: An expanded view of ghrelin's biological interactions and avenues for controlling ghrelin signaling. Molecular Membrane Biology, 2016, 33, 111-124.	2.0	13
20	Progress in Small Molecule and Biologic Therapeutics Targeting Ghrelin Signaling. Mini-Reviews in Medicinal Chemistry, 2016, 16, 465-480.	2.4	10
21	Novel Regulator of Acylated Ghrelin, CF801, Reduces Weight Gain, Rebound Feeding after a Fast, and Adiposity in Mice. Frontiers in Endocrinology, 2015, 6, 144.	3.5	10
22	A new class of ghrelin O-acyltransferase inhibitors incorporating triazole-linked lipid mimetic groups. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2800-2803.	2.2	15
23	Simultaneous Site-Specific Dual Protein Labeling Using Protein Prenyltransferases. Bioconjugate Chemistry, 2015, 26, 2542-2553.	3.6	25
24	Structure–Activity Analysis of Human Ghrelin <i>O</i> -Acyltransferase Reveals Chemical Determinants of Ghrelin Selectivity and Acyl Group Recognition. Biochemistry, 2015, 54, 1100-1110.	2.5	44
25	Quantitative Determination of Cellular Farnesyltransferase Activity: Towards Defining the Minimum Substrate Reactivity for Biologically Relevant Protein Farnesylation. ChemBioChem, 2014, 15, 2205-2210.	2.6	7
26	Targeted Reengineering of Protein Geranylgeranyltransferase Type I Selectivity Functionally Implicates Active-Site Residues in Protein-Substrate Recognition. Biochemistry, 2014, 53, 434-446.	2.5	11
27	A fluorescent peptide substrate facilitates investigation of ghrelin recognition and acylation by ghrelin O-acyltransferase. Analytical Biochemistry, 2013, 437, 68-76.	2.4	31
28	Expansion of Protein Farnesyltransferase Specificity Using "Tunable―Active Site Interactions. Journal of Biological Chemistry, 2012, 287, 38090-38100.	3.4	15
29	Synthesis of Frame-Shifted Farnesyl Diphosphate Analogs. Organic Letters, 2012, 14, 4038-4041.	4.6	7
30	Global Identification of Protein Prenyltransferase Substrates. The Enzymes, 2011, 29, 207-234.	1.7	6
31	Identification of a Novel Class of Farnesylation Targets by Structure-Based Modeling of Binding Specificity. PLoS Computational Biology, 2011, 7, e1002170.	3.2	58
32	Synthesis and screening of a CaaL peptide library versus FTase reveals a surprising number of substrates. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 767-770.	2.2	26
33	Identification of Novel Peptide Substrates for Protein Farnesyltransferase Reveals Two Substrate Classes with Distinct Sequence Selectivities. Journal of Molecular Biology, 2010, 395, 176-190.	4.2	60
34	Getting a handle on protein prenylation. Nature Chemical Biology, 2009, 5, 197-198.	8.0	13
35	2′-Amino-Modified Ribonucleotides as Probes for Local Interactions Within RNA. Methods in Enzymology, 2009, 468, 107-125.	1.0	4
36	Context-Dependent Substrate Recognition by Protein Farnesyltransferase. Biochemistry, 2009, 48, 1691-1701.	2.5	38

#	Article	IF	CITATIONS
37	The 2′-Hydroxyl Group of the Guanosine Nucleophile Donates a Functionally Important Hydrogen Bond in the <i>Tetrahymena</i> Ribozyme Reaction. Biochemistry, 2008, 47, 7684-7694.	2.5	19
38	Improved synthesis of 2′-amino-2′-deoxyguanosine and its phosphoramidite. Bioorganic and Medicinal Chemistry, 2006, 14, 705-713.	3.0	13
39	Functional Identification of Catalytic Metal Ion Binding Sites within RNA. PLoS Biology, 2005, 3, e277.	5.6	67
40	An Atomic Mutation Cycle for Exploring RNA's 2â€~-Hydroxyl Group. Journal of the American Chemical Society, 2004, 126, 13578-13579.	13.7	15
41	Using Selective Withdrawal to Coat Microparticles. Science, 2001, 292, 265-267.	12.6	142
42	Formation and Anomalous Behavior of Aminonaphthaleneâ°'Cinnamonitrile Exciplexes. Journal of Physical Chemistry A, 2000, 104, 3261-3268.	2.5	18