James A Anderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7392112/publications.pdf Version: 2024-02-01

IAMES & ANDERSON

#	Article	IF	CITATIONS
1	Chronic Environmental Perturbation Influences Microbial Community Assembly Patterns. Environmental Science & Technology, 2022, 56, 2300-2311.	4.6	21
2	Dehydroaromatization of methane over noble metal loaded Mo/H-ZSM-5 zeolite catalysts. Applied Petrochemical Research, 2021, 11, 235-248.	1.3	2
3	Study of the Interaction of an Iron Phthalocyanine Complex over Surface Modified Carbon Nanotubes. Materials, 2021, 14, 4067.	1.3	4
4	NOx Storage on BaTi0.8Cu0.2O3 Perovskite Catalysts: Addressing a Feasible Mechanism. Nanomaterials, 2021, 11, 2133.	1.9	3
5	Efficient synthesis of the Cu-SAPO-44 zeolite with excellent activity for selective catalytic reduction of NO by NH3. Catalysis Today, 2019, 332, 35-41.	2.2	23
6	Mechanisms of Surface Charge Modification of Carbonates in Aqueous Electrolyte Solutions. Colloids and Interfaces, 2019, 3, 62.	0.9	57
7	Characterisation of microbial communities of drill cuttings piles from offshore oil and gas installations. Marine Pollution Bulletin, 2019, 142, 169-177.	2.3	21
8	Support morphology-dependent alloying behaviour and interfacial effects of bimetallic Ni–Cu/CeO ₂ catalysts. Chemical Science, 2019, 10, 3556-3566.	3.7	34
9	Electric-Field-Assisted Facile Synthesis of Metal Nanoparticles. ACS Sustainable Chemistry and Engineering, 2019, 7, 1271-1278.	3.2	13
10	Pressure and temperature effects on deepâ€sea hydrocarbonâ€degrading microbial communities in subarctic sediments. MicrobiologyOpen, 2019, 8, e00768.	1.2	20
11	Multiple strategies to decrease ignition temperature for soot combustion on ultrathin MnO2- nanosheet array. Applied Catalysis B: Environmental, 2019, 246, 312-321.	10.8	77
12	Effects of Superdispersant-25 on the sorption dynamics of naphthalene and phenanthrene in marine sediments. Journal of Soils and Sediments, 2019, 19, 1576-1586.	1.5	1
13	Molecular-Level Insight into Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ to N ₂ over a Highly Efficient Bifunctional V _{<i>a</i>} -MnO _{<i>x</i>} Catalyst at Low Temperature. ACS Catalysis, 2018, 8, 4937-4949.	5.5	103
14	4937-4949. Mechanistic Insights into the Desorption of Methanol and Dimethyl Ether Over ZSM-5 Catalysts. Catalysis Letters, 2018, 148, 474-488.	1.4	25
15	Active Site Identification and Modification of Electronic States by Atomic-Scale Doping To Enhance Oxide Catalyst Innovation. ACS Catalysis, 2018, 8, 1399-1404.	5.5	42
16	Carbon Capture by Metal Oxides: Unleashing the Potential of the (111) Facet. Journal of the American Chemical Society, 2018, 140, 4736-4742.	6.6	83
17	Metal-promoted titania photocatalysis for destruction of nitrates and organics from aqueous environments. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170060.	1.6	9
18	Kinetic analysis of the steam reforming of ethanol over Ni/SiO ₂ for the elucidation of metal-dominated reaction pathways. Reaction Chemistry and Engineering, 2018, 3, 883-897.	1.9	24

JAMES A ANDERSON

#	Article	IF	CITATIONS
19	Use of carbon-based composites to enhance performance of TiO2 for the simultaneous removal of nitrates and organics from aqueous environments. Environmental Science and Pollution Research, 2018, 25, 32001-32014.	2.7	10
20	Advective pore-water transport of hydrocarbons in North East Scotland coastal sands. Environmental Science and Pollution Research, 2018, 25, 28445-28459.	2.7	2
21	Effect of spatial origin and hydrocarbon composition on bacterial consortia community structure and hydrocarbon biodegradation rates. FEMS Microbiology Ecology, 2018, 94, .	1.3	25
22	Low Salinity Waterflooding in Carbonate Reservoirs: Review of Interfacial Mechanisms. Colloids and Interfaces, 2018, 2, 20.	0.9	139
23	Bacterial Community Response in Deep Faroe-Shetland Channel Sediments Following Hydrocarbon Entrainment With and Without Dispersant Addition. Frontiers in Marine Science, 2018, 5, .	1.2	12
24	Electrocatalysis on Separator Modified by Molybdenum Trioxide Nanobelts for Lithium–Sulfur Batteries. Advanced Materials Interfaces, 2018, 5, 1800243.	1.9	66
25	Cathode materials for rechargeable aluminum batteries: current status and progress. Journal of Materials Chemistry A, 2017, 5, 5646-5660.	5.2	147
26	Nonâ€Thermal Plasma Activation of Goldâ€Based Catalysts for Lowâ€Temperature Water–Gas Shift Catalysis. Angewandte Chemie, 2017, 129, 5671-5675.	1.6	11
27	Nonâ€Thermal Plasma Activation of Goldâ€Based Catalysts for Lowâ€Temperature Water–Gas Shift Catalysis. Angewandte Chemie - International Edition, 2017, 56, 5579-5583.	7.2	77
28	Cofactor NAD(P)H Regeneration Inspired by Heterogeneous Pathways. CheM, 2017, 2, 621-654.	5.8	287
29	Removal of Confined Ionic Liquid from a Metal Organic Framework by Extraction with Molecular Solvents. Journal of Physical Chemistry C, 2017, 121, 10577-10586.	1.5	12
30	Simultaneous photocatalytic removal of nitrate and oxalic acid over Cu2O/TiO2 and Cu2O/TiO2-AC composites. Applied Catalysis B: Environmental, 2017, 217, 181-191.	10.8	97
31	Surface and bulk carbonate formation in calcium oxide during CO2 capture. Applied Energy, 2017, 202, 365-376.	5.1	17
32	Quantification of hydrocarbon species on surfaces by combined microbalance-FTIR. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 181, 65-72.	2.0	6
33	Selective hydrogenation of mixed alkyne/alkene streams at elevated pressure over a palladium sulfide catalyst. Journal of Catalysis, 2017, 355, 40-52.	3.1	56
34	The Variable Influence of Dispersant on Degradation of Oil Hydrocarbons in Subarctic Deep-Sea Sediments at Low Temperatures (0–5 °C). Scientific Reports, 2017, 7, 2253.	1.6	40
35	Rapidâ€ S can Operando Infrared Spectroscopy. ChemCatChem, 2016, 8, 1905-1908.	1.8	8
36	In-situ infrared spectroscopy as a non-invasive technique to study carbon sequestration at high pressure and high temperature. International Journal of Greenhouse Gas Control, 2016, 51, 126-135.	2.3	3

JAMES A ANDERSON

#	Article	IF	CITATIONS
37	Influence of Water on the Chemistry and Structure of the Metal–Organic Framework Cu ₃ (btc) ₂ . Journal of Physical Chemistry C, 2016, 120, 17323-17333.	1.5	64
38	Cation Dependent Carbonate Speciation and the Effect of Water. Journal of Physical Chemistry C, 2016, 120, 17570-17578.	1.5	6
39	The Potential of Cuâ€ S APOâ€44 in the Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ . ChemCatChem, 2016, 8, 3740-3745.	1.8	23
40	Biomass-derived nanostructured porous carbons for lithium-sulfur batteries. Science China Materials, 2016, 59, 389-407.	3.5	110
41	An oxygen pool from YBaCo ₄ O ₇ -based oxides for soot combustion. Catalysis Science and Technology, 2016, 6, 4511-4515.	2.1	11
42	Molecular Interactions of a Cu-Based Metal–Organic Framework with a Confined Imidazolium-Based Ionic Liquid: A Combined Density Functional Theory and Experimental Vibrational Spectroscopy Study. Journal of Physical Chemistry C, 2016, 120, 3295-3304.	1.5	155
43	Acetylene hydrogenation over structured Au–Pd catalysts. Faraday Discussions, 2016, 188, 499-523.	1.6	30
44	Ecohydrological separation in wet, low energy northern environments? A preliminary assessment using different soil water extraction techniques. Hydrological Processes, 2015, 29, 5139-5152.	1.1	100
45	Triphenylphosphine: a ligand for heterogeneous catalysis too? Selectivity enhancement in acetylene hydrogenation over modified Pd/TiO ₂ catalyst. Catalysis Science and Technology, 2015, 5, 2449-2459.	2.1	72
46	Improvement of Air/Fuel Ratio Operating Window and Hydrothermal Stability for Pd-Only Three-Way Catalysts through a Pd–Ce ₂ Zr ₂ O ₈ Superstructure Interaction. Environmental Science & Technology, 2015, 49, 7989-7995.	4.6	31
47	Recent advances in selective acetylene hydrogenation using palladium containing catalysts. Frontiers of Chemical Science and Engineering, 2015, 9, 142-153.	2.3	199
48	Optimisation of preparation method for Pd doped Cu/Al ₂ O ₃ catalysts for selective acetylene hydrogenation. Catalysis Science and Technology, 2015, 5, 2880-2890.	2.1	80
49	Influence of the metal precursor on the catalytic behavior of Pt/Ceria catalysts in the preferential oxidation of CO in the presence of H2 (PROX). Journal of Colloid and Interface Science, 2015, 443, 45-55.	5.0	32
50	The potential of microbial processes for lignocellulosic biomass conversion to ethanol: a review. Journal of Chemical Technology and Biotechnology, 2015, 90, 366-383.	1.6	72
51	Sulfur as a catalyst promoter or selectivity modifier in heterogeneous catalysis. Catalysis Science and Technology, 2014, 4, 272-294.	2.1	93
52	Cu/Al 2 O 3 catalysts modified with Pd for selective acetylene hydrogenation. Journal of Catalysis, 2014, 319, 127-135.	3.1	163
53	Gold modified cobalt-based Fischer-Tropsch catalysts for conversion of synthesis gas to liquid fuels. Frontiers of Chemical Science and Engineering, 2013, 7, 262-269.	2.3	12
54	Aqueous phase photocatalytic nitrate destruction using titania based materials: routes to enhanced performance and prospects for visible light activation. Catalysis Science and Technology, 2013, 3, 879.	2.1	58

JAMES A ANDERSON

#	Article	IF	CITATIONS
55	Simultaneous photocatalytic degradation of nitrate and oxalic acid over gold promoted titania. Catalysis Today, 2012, 181, 171-176.	2.2	52
56	Photocatalytic nitrate reduction over Au/TiO2. Catalysis Today, 2011, 175, 316-321.	2.2	62
57	Confirmation of Chirality in Homogeneous and Heterogeneous Salenâ€Based Catalysts. ChemCatChem, 2011, 3, 699-703.	1.8	9
58	Photocatalytic nitrate reduction over metal modified TiO2. Applied Catalysis B: Environmental, 2009, 85, 192-200.	10.8	181
59	FTIR study of aqueous nitrate reduction over Pd/TiO2. Applied Catalysis B: Environmental, 2008, 77, 409-417.	10.8	95
60	Photoformed electron transfer from TiO2 to metal clusters. Catalysis Communications, 2008, 9, 1991-1995.	1.6	56
61	Imaging of low temperature induced SMSI on Pd/TiO2 catalysts. Catalysis Letters, 2007, 114, 91-95.	1.4	41
62	Use of Water as a Solvent in Directing Hydrogenation Reactions of Aromatic Acids over Pd/carbon Nanofibre Catalysts. Catalysis Letters, 2007, 119, 16-20.	1.4	22
63	Adsorption of Probe Molecules on Nanostructured Oxides. , 2006, , 311-334.		0
64	Can TiO2 promote the reduction of nitrates in water?. Journal of Catalysis, 2005, 234, 282-291.	3.1	76
65	Water Denitration over a Pd–Sn/Al2O3 Catalyst. Catalysis Letters, 2005, 105, 209-217.	1.4	49
66	Infrared study of the adsorption of acetone, acrolein, ethanoic acid and propene–NO mixtures on Rh/Al2O3 catalysts. Journal of the Chemical Society Faraday Transactions I, 1989, 85, 1117.	1.0	36