Lucia Fagiolari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7392075/publications.pdf

Version: 2024-02-01

15 papers	1,194 citations	14 h-index	996849 15 g-index
16	16	16	1315
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Lignin as Polymer Electrolyte Precursor for Stable and Sustainable Potassium Batteries. ChemSusChem, 2022, 15, .	3.6	50
2	Microâ€Mesoporous Carbons from Cyclodextrin Nanosponges Enabling Highâ€Capacity Silicon Anodes and Sulfur Cathodes for Lithiated Siâ€S Batteries. Chemistry - A European Journal, 2022, 28, .	1.7	48
3	Integrated energy conversion and storage devices: Interfacing solar cells, batteries and supercapacitors. Energy Storage Materials, 2022, 51, 400-434.	9.5	133
4	Optimizing noble metals exploitation in water oxidation catalysis by their incorporation in layered double hydroxides. Inorganica Chimica Acta, 2021, 516, 120161.	1.2	7
5	Platinum-free photoelectrochromic devices working with copper-based electrolytes for ultrastable smart windows. Journal of Materials Chemistry A, 2021, 9, 19687-19691.	5.2	53
6	An Overview on Anodes for Magnesium Batteries: Challenges towards a Promising Storage Solution for Renewables. Nanomaterials, 2021, 11, 810.	1.9	97
7	Poly(3,4â€ethylenedioxythiophene) in Dyeâ€Sensitized Solar Cells: Toward Solidâ€State and Platinumâ€Free Photovoltaics. Advanced Sustainable Systems, 2021, 5, 2100025.	2.7	64
8	Lignin-Based Polymer Electrolyte Membranes for Sustainable Aqueous Dye-Sensitized Solar Cells. ACS Sustainable Chemistry and Engineering, 2021, 9, 8550-8560.	3.2	87
9	Photoanodes for Aqueous Solar Cells: Exploring Additives and Formulations Starting from a Commercial TiO ₂ Paste. ChemSusChem, 2020, 13, 6562-6573.	3.6	71
10	Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells. Green Chemistry, 2020, 22, 7168-7218.	4.6	272
11	Iridium-Doped Nanosized Zn–Al Layered Double Hydroxides as Efficient Water Oxidation Catalysts. ACS Applied Materials & Interfaces, 2020, 12, 32736-32745.	4.0	24
12	Ir- and Ru-doped layered double hydroxides as affordable heterogeneous catalysts for electrochemical water oxidation. Dalton Transactions, 2020, 49, 2468-2476.	1.6	29
13	Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells. Energy and Environmental Science, 2019, 12, 3437-3472.	15.6	223
14	Photocatalytic water oxidation mediated by iridium complexes. Catalysis Today, 2017, 290, 10-18.	2.2	18
15	A Ternary Znâ´'Alâ´'Ir Hydrotalciteâ€Like Compound Exhibiting High Efficiency and Recyclability as a Water Oxidation Catalyst. ChemPlusChem, 2016, 81, 1060-1063.	1.3	18