Michael Hofreiter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7392007/publications.pdf

Version: 2024-02-01

244 papers

22,797 citations

7551 77 h-index 139 g-index

262 all docs 262 docs citations

times ranked

262

18338 citing authors

#	Article	IF	Citations
1	Revisiting proboscidean phylogeny and evolution through total evidence and palaeogenetic analyses including Notiomastodon ancient DNA. IScience, 2022, 25, 103559.	1.9	13
2	Insights into the geographical origin and phylogeographical patterns of <i>Paradisaea </i> birds-of-paradise. Zoological Journal of the Linnean Society, 2022, 196, 1394-1407.	1.0	1
3	Genomic basis for skin phenotype and cold adaptation in the extinct Steller's sea cow. Science Advances, 2022, 8, eabl6496.	4.7	9
4	Ancient genome provides insights into the history of Eurasian lynx in Iberia and Western Europe. Quaternary Science Reviews, 2022, 285, 107518.	1.4	3
5	Evolutionary Divergence and Radula Diversification in Two Ecomorphs from an Adaptive Radiation of Freshwater Snails. Genes, 2022, 13, 1029.	1.0	3
6	Grey wolf genomic history reveals a dual ancestry of dogs. Nature, 2022, 607, 313-320.	13.7	48
7	Phylotranscriptomic evidence for pervasive ancient hybridization among Old World salamanders. Molecular Phylogenetics and Evolution, 2021, 155, 106967.	1.2	22
8	Identifying the true number of specimens of the extinct blue antelope (Hippotragus leucophaeus). Scientific Reports, 2021, 11, 2100.	1.6	9
9	Mitogenomes of historical type specimens unravel the taxonomy of sportive lemurs (<i>Lepilemur</i> spp.) in Northwest Madagascar. Zoological Research, 2021, 42, 428-432.	0.9	5
10	Ancient mitochondrial genomes from Chinese cave hyenas provide insights into the evolutionary history of the genus <i>Crocuta</i> . Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202934.	1.2	9
11	The late pleistocene cave bear fauna of the Torrener BÃÞenhöhle in the northern alps (Salzburg,) Tj ETQq1 1 0.7	84314 rgE	BT /Overlock 1
12	Ecological Specialization and Evolutionary Reticulation in Extant Hyaenidae. Molecular Biology and Evolution, 2021, 38, 3884-3897.	3.5	15
13	Million-year-old DNA sheds light on the genomic history of mammoths. Nature, 2021, 591, 265-269.	13.7	179
14	Middle Pleistocene genome calibrates a revised evolutionary history of extinct cave bears. Current Biology, 2021, 31, 1771-1779.e7.	1.8	27
15	Insight into the introduction of domestic cattle and the process of Neolithization to the Spanish region Galicia by genetic evidence. PLoS ONE, 2021, 16, e0249537.	1.1	3
16	African and Asian leopards are highly differentiated at the genomic level. Current Biology, 2021, 31, 1872-1882.e5.	1.8	20
17	Recovery and analysis of ancient beetle DNA from subfossil packrat middens using high-throughput sequencing. Scientific Reports, 2021, 11, 12635.	1.6	12
18	Molecular Clocks and Archeogenomics of a Late Period Egyptian Date Palm Leaf Reveal Introgression from Wild Relatives and Add Timestamps on the Domestication. Molecular Biology and Evolution, 2021, 38, 4475-4492.	3.5	14

#	Article	IF	Citations
19	Successful application of ancient DNA extraction and library construction protocols to museum wet collection specimens. Molecular Ecology Resources, 2021, 21, 2299-2315.	2.2	36
20	A sliver of the past: The decimation of the genetic diversity of the Mexican wolf. Molecular Ecology, 2021, 30, 6340-6354.	2.0	6
21	Diversity and Paleodemography of the Addax (Addax nasomaculatus), a Saharan Antelope on the Verge of Extinction. Genes, 2021, 12, 1236.	1.0	8
22	Estimating the dwarfing rate of an extinct Sicilian elephant. Current Biology, 2021, 31, 3606-3612.e7.	1.8	12
23	Exploring the Past Biosphere of Chew Bahir/Southern Ethiopia: Cross-Species Hybridization Capture of Ancient Sedimentary DNA from a Deep Drill Core. Frontiers in Earth Science, 2021, 9, .	0.8	8
24	Mitochondrial DNA sequencing of a wet-collection syntype demonstrates the importance of type material as genetic resource for lantern shark taxonomy (Chondrichthyes: Etmopteridae). Royal Society Open Science, 2021, 8, 210474.	1.1	7
25	Progress in forensic bone DNA analysis: Lessons learned from ancient DNA. Forensic Science International: Genetics, 2021, 54, 102538.	1.6	31
26	Ancient DNA from the Asiatic Wild Dog (Cuon alpinus) from Europe. Genes, 2021, 12, 144.	1.0	5
27	Ancient Mitogenomes Provide New Insights into the Origin and Early Introduction of Chinese Domestic Donkeys. Frontiers in Genetics, 2021, 12, 759831.	1.1	2
28	The origins and spread of domestic horses from the Western Eurasian steppes. Nature, 2021, 598, 634-640.	13.7	142
29	Mitochondrial genomes of Late Pleistocene caballine horses from China belong to a separate clade. Quaternary Science Reviews, 2020, 250, 106691.	1.4	9
30	EarlyÂPleistocene origin and extensive intra-species diversity of the extinct cave lion. Scientific Reports, 2020, 10, 12621.	1.6	12
31	Annotated genome sequences of the carnivorous plant Roridula gorgonias and a non-carnivorous relative, Clethra arborea. BMC Research Notes, 2020, 13, 426.	0.6	5
32	â€~Barcode fishing' for archival DNA from historical type material overcomes taxonomic hurdles, enabling the description of a new frog species. Scientific Reports, 2020, 10, 19109.	1.6	16
33	Moose genomes reveal past glacial demography and the origin of modern lineages. BMC Genomics, 2020, 21, 854.	1.2	23
34	Target-enriched DNA sequencing from historical type material enables a partial revision of the Madagascar giant stream frogs (genus <i>Mantidactylus</i>). Journal of Natural History, 2020, 54, 87-118.	0.2	16
35	High-throughput DNA sequencing of museum specimens sheds light on the long-missing species of the <i>Bokermannohyla claresignata </i> group (Anura: Hylidae: Cophomantini). Zoological Journal of the Linnean Society, 2020, 190, 1235-1255.	1.0	20
36	Hyena paleogenomes reveal a complex evolutionary history of cross-continental gene flow between spotted and cave hyena. Science Advances, 2020, 6, eaay0456.	4.7	38

#	Article	IF	CITATIONS
37	Ancestral mitogenome capture of the Southeast Asian banded linsang. PLoS ONE, 2020, 15, e0234385.	1.1	9
38	Consensify: A Method for Generating Pseudohaploid Genome Sequences from Palaeogenomic Datasets with Reduced Error Rates. Genes, 2020, 11, 50.	1.0	15
39	Heavy reliance on plants for Romanian cave bears evidenced by amino acid nitrogen isotope analysis. Scientific Reports, 2020, 10, 6612.	1.6	19
40	Ancient DNA reveals twenty million years of aquatic life in beavers. Current Biology, 2020, 30, R110-R111.	1.8	4
41	Mitogenomic phylogeny of the Asian colobine genus <i>Trachypithecus</i> with special focus on <i>Trachypithecus phayrei</i> (Blyth, 1847) and description of a new species. Zoological Research, 2020, 41, 656-669.	0.9	13
42	Reconstructing protein-coding sequences from ancient DNA. Methods in Enzymology, 2020, 642, 21-33.	0.4	0
43	Different maternal lineages revealed by ancient mitochondrial genome of <i>Camelus bactrianus </i> from China. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2019, 30, 786-793.	0.7	4
44	Paleogenome Reveals Genetic Contribution of Extinct Giant Panda to Extant Populations. Current Biology, 2019, 29, 1695-1700.e6.	1.8	22
45	Molecular identification of late and terminal Pleistocene Equus ovodovi from northeastern China. PLoS ONE, 2019, 14, e0216883.	1.1	15
46	Tracking Five Millennia of Horse Management with Extensive Ancient Genome Time Series. Cell, 2019, 177, 1419-1435.e31.	13.5	195
47	Emergence of a Chimeric Globin Pseudogene and Increased Hemoglobin Oxygen Affinity Underlie the Evolution of Aquatic Specializations in Sirenia. Molecular Biology and Evolution, 2019, 36, 1134-1147.	3.5	7
48	A western route of prehistoric human migration from Africa into the Iberian Peninsula. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182288.	1.2	47
49	Once lost, twice found: Combined analysis of ancient giant panda sequences characterises extinct clade. Journal of Biogeography, 2019, 46, 251-253.	1.4	37
50	Demographic reconstruction from ancient DNA supports rapid extinction of the great auk. ELife, 2019, 8, .	2.8	15
51	Aardwolf Population Diversity and Phylogenetic Positioning Inferred Using Complete Mitochondrial Genomes. African Journal of Wildlife Research, 2019, 49, .	0.2	0
52	Ancient genomes revisit the ancestry of domestic and Przewalski's horses. Science, 2018, 360, 111-114.	6.0	241
53	A comprehensive genomic history of extinct and living elephants. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2566-E2574.	3 . 3	142
54	Novel Genes, Ancient Genes, and Gene Co-Option Contributed to the Genetic Basis of the Radula, a Molluscan Innovation. Molecular Biology and Evolution, 2018, 35, 1638-1652.	3 . 5	36

#	Article	IF	CITATIONS
55	Decline of genetic diversity in ancient domestic stallions in Europe. Science Advances, 2018, 4, eaap9691.	4.7	29
56	Cryptic species in a well-known habitat: applying taxonomics to the amphipod genus Epimeria (Crustacea, Peracarida). Scientific Reports, 2018, 8, 6893.	1.6	15
57	The complete mitochondrial genome of the common vole, Microtus arvalis (Rodentia: Arvicolinae). Mitochondrial DNA Part B: Resources, 2018, 3, 446-447.	0.2	9
58	Improving draft genome contiguity with reference-derived in silico mate-pair libraries. GigaScience, 2018, 7, .	3.3	19
59	Extended and Continuous Decline in Effective Population Size Results in Low Genomic Diversity in the World's Rarest Hyena Species, the Brown Hyena. Molecular Biology and Evolution, 2018, 35, 1225-1237.	3. 5	72
60	Historical biogeography of the leopard (Panthera pardus) and its extinct Eurasian populations. BMC Evolutionary Biology, 2018, 18, 156.	3.2	16
61	Ancient DNA from Giant Panda (Ailuropoda melanoleuca) of South-Western China Reveals Genetic Diversity Loss during the Holocene. Genes, 2018, 9, 198.	1.0	14
62	Targeted resequencing of coding <scp>DNA</scp> sequences for <scp>SNP</scp> discovery in nonmodel species. Molecular Ecology Resources, 2018, 18, 1356-1373.	2.2	19
63	Partial genomic survival of cave bears in living brown bears. Nature Ecology and Evolution, 2018, 2, 1563-1570.	3.4	132
64	Optimized <scp>DNA</scp> sampling of ancient bones using Computed Tomography scans. Molecular Ecology Resources, 2018, 18, 1196-1208.	2.2	31
65	Complex Admixture Preceded and Followed the Extinction of Wisent in the Wild. Molecular Biology and Evolution, 2017, 34, msw254.	3.5	30
66	Combined hybridization capture and shotgun sequencing for ancient <scp>DNA</scp> analysis of extinct wild and domestic dromedary camel. Molecular Ecology Resources, 2017, 17, 300-313.	2.2	25
67	Tropical ancient DNA reveals relationships of the extinct Bahamian giant tortoise <i>Chelonoidis alburyorum</i> . Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162235.	1.2	55
68	Genome-wide data from two early Neolithic East Asian individuals dating to 7700 years ago. Science Advances, 2017, 3, e1601877.	4.7	100
69	Ancient genomic changes associated with domestication of the horse. Science, 2017, 356, 442-445.	6.0	185
70	Paleogenomic Evidence for Multi-generational Mixing between Neolithic Farmers and Mesolithic Hunter-Gatherers in the Lower Danube Basin. Current Biology, 2017, 27, 1801-1810.e10.	1.8	110
71	Complete mitochondrial genome of a bat-eared fox (Otocyon megalotis), along with phylogenetic considerations. Mitochondrial DNA Part B: Resources, 2017, 2, 298-299.	0.2	2
72	The evolutionary and phylogeographic history of woolly mammoths: a comprehensive mitogenomic analysis. Scientific Reports, 2017, 7, 44585.	1.6	39

#	Article	IF	Citations
73	Evolutionary History of Saber-Toothed Cats Based on Ancient Mitogenomics. Current Biology, 2017, 27, 3330-3336.e5.	1.8	45
74	Inactivation of thermogenic UCP1 as a historical contingency in multiple placental mammal clades. Science Advances, 2017, 3, e1602878.	4.7	78
75	Origin and dispersal of early domestic pigs in northern China. Scientific Reports, 2017, 7, 5602.	1.6	32
76	A mitogenomic timetree for Darwin's enigmatic South American mammal Macrauchenia patachonica. Nature Communications, 2017, 8, 15951.	5.8	71
77	Spatiotemporal Dynamics of Genetic Variation in the Iberian Lynx along Its Path to Extinction Reconstructed with Ancient DNA. Molecular Biology and Evolution, 2017, 34, 2893-2907.	3.5	33
78	Comparing mitogenomic timetrees for two African savannah primate genera (Chlorocebus and Papio). Zoological Journal of the Linnean Society, 2017, 181, 471-483.	1.0	15
79	An 'Aukward' Tale: A Genetic Approach to Discover the Whereabouts of the Last Great Auks. Genes, 2017, 8, 164.	1.0	11
80	Ancient mtDNA diversity reveals specific population development of wild horses in Switzerland after the Last Glacial Maximum. PLoS ONE, 2017, 12, e0177458.	1.1	5
81	The contribution of Late Pleistocene megafauna finds to submerged archaeology and the interpretation of ancient coastal landscapes. Journal of Archaeological Science: Reports, 2017, 15, 290-298.	0.2	2
82	Palaeogenomes of Eurasian straight-tusked elephants challenge the current view of elephant evolution. ELife, 2017, 6, .	2.8	50
83	Spotted phenotypes in horses lost attractiveness in the Middle Ages. Scientific Reports, 2016, 6, 38548.	1.6	31
84	Ancient and modern DNA reveal dynamics of domestication and cross-continental dispersal of the dromedary. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6707-6712.	3.3	141
85	Mitochondrial d-loop variation, coat colour and sex identification of Late Iron Age horses in Switzerland. Journal of Archaeological Science: Reports, 2016, 6, 386-396.	0.2	2
86	Barcoding the largest animals on Earth: ongoing challenges and molecular solutions in the taxonomic identification of ancient cetaceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150332.	1.8	30
87	The origin of ambling horses. Current Biology, 2016, 26, R697-R699.	1.8	19
88	Ancient DNA reveals differences in behaviour and sociality between brown bears and extinct cave bears. Molecular Ecology, 2016, 25, 4907-4918.	2.0	58
89	Impact of enrichment conditions on crossâ€species capture of fresh and degraded <scp>DNA</scp> . Molecular Ecology Resources, 2016, 16, 42-55.	2.2	70
90	The genetics of an early Neolithic pastoralist from the Zagros, Iran. Scientific Reports, 2016, 6, 31326.	1.6	61

#	Article	IF	CITATIONS
91	Does cooperation mean kinship between spatially discrete ant nests?. Ecology and Evolution, 2016, 6, 8846-8856.	0.8	8
92	Phylogenetic analyses suggest that diversification and body size evolution are independent in insects. BMC Evolutionary Biology, 2016, 16, 8.	3.2	21
93	Optimal Ancient DNA Yields from the Inner Ear Part of the Human Petrous Bone. PLoS ONE, 2015, 10, e0129102.	1.1	332
94	Interordinal gene capture, the phylogenetic position of Steller's sea cow based on molecular and morphological data, and the macroevolutionary history of Sirenia. Molecular Phylogenetics and Evolution, 2015, 91, 178-193.	1.2	75
95	Re-inventing ancient human DNA. Investigative Genetics, 2015, 6, 4.	3.3	19
96	Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nature Communications, 2015, 6, 8912.	5.8	334
97	Palaeolithic dogs and Pleistocene wolves revisited: a reply to Morey (2014). Journal of Archaeological Science, 2015, 54, 210-216.	1.2	38
98	Kiwi genome provides insights into evolution of a nocturnal lifestyle. Genome Biology, 2015, 16, 147.	3.8	68
99	Resurrecting phenotypes from ancient DNA sequences: promises and perspectives. Canadian Journal of Zoology, 2015, 93, 701-710.	0.4	5
100	Reply to Peng et al.: Archaeological contexts should not be ignored for early chicken domestication. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1972-3.	3.3	4
101	Burial condition is the most important factor for mtDNA PCR amplification success in Palaeolithic equid remains from the Alpine foreland. Archaeological and Anthropological Sciences, 2015, 7, 505-515.	0.7	20
102	Reply to Peters et al.: Further discussions confirm early Holocene chicken domestication in northern China. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2416.	3.3	22
103	Climate impacts on transocean dispersal and habitat in gray whales from the Pleistocene to 2100. Molecular Ecology, 2015, 24, 1510-1522.	2.0	38
104	Ancient proteins resolve the evolutionary history of Darwin's South American ungulates. Nature, 2015, 522, 81-84.	13.7	273
105	DNA capture reveals transoceanic gene flow in endangered river sharks. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13302-13307.	3.3	65
106	Ancient Ethiopian genome reveals extensive Eurasian admixture in Eastern Africa. Science, 2015, 350, 820-822.	6.0	277
107	Ancient DNA: the first three decades. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130371.	1.8	97
108	Twenty-five thousand years of fluctuating selection on leopard complex spotting and congenital night blindness in horses. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130386.	1.8	43

#	Article	IF	Citations
109	Paging through history: parchment as a reservoir of ancient DNA for next generation sequencing. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130379.	1.8	52
110	The future of ancient DNA: Technical advances and conceptual shifts. BioEssays, 2015, 37, 284-293.	1.2	209
111	The last of its kind? Radiocarbon, ancient DNA and stable isotope evidence from a late cave bear (Ursus) Tj $ETQq1$	1,0,78431 0.7	.4.rgBT /Ov
112	Prehistoric genomes reveal the genetic foundation and cost of horse domestication. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5661-9.	3.3	260
113	Identification of the remains of King Richard III. Nature Communications, 2014, 5, 5631.	5.8	163
114	Early Holocene chicken domestication in northern China. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17564-17569.	3.3	181
115	Genome flux and stasis in a five millennium transect of European prehistory. Nature Communications, 2014, 5, 5257.	5.8	542
116	Ancient mitochondrial <scp>DNA</scp> and the genetic history of <scp>E</scp> urasian beaver (<i><i><scp>C</scp>astor fiber</i>) in <scp>E</scp>urope. Molecular Ecology, 2014, 23, 1717-1729.</i>	2.0	24
117	Mitochondrial DNA diversity and evolution of the Pleistocene cave bear complex. Quaternary International, 2014, 339-340, 224-231.	0.7	60
118	A Paleogenomic Perspective on Evolution and Gene Function: New Insights from Ancient DNA. Science, 2014, 343, 1236573.	6.0	197
119	Reconstruction and in vivo analysis of the extinct tbx5 gene from ancient wingless moa (Aves:) Tj ETQq $1\ 1\ 0.7843$	14 rgBT /C	Dygrlock 10
120	Molecular Phylogeny, Biogeography, and Habitat Preference Evolution of Marsupials. Molecular Biology and Evolution, 2014, 31, 2322-2330.	3.5	189
121	Phylogenetic Distribution of Extant Richness Suggests Metamorphosis Is a Key Innovation Driving Diversification in Insects. PLoS ONE, 2014, 9, e109085.	1.1	115
122	Morphological and genetic evidence for early Holocene cattle management in northeastern China. Nature Communications, 2013, 4, 2755.	5.8	82
123	Mitochondrial Diversity and Distribution of African Green Monkeys (Chlorocebus Gray, 1870). American Journal of Primatology, 2013, 75, 350-360.	0.8	87
124	Palaeolithic dogs and the early domestication of the wolf: a reply to the comments of Crockford and Kuzmin (2012). Journal of Archaeological Science, 2013, 40, 786-792.	1.2	31
125	Effects of late quaternary climate change on <scp>P</scp> alearctic shrews. Global Change Biology, 2013, 19, 1865-1874.	4.2	24
126	Genetic basis and evolutionary causes of colour variation in vertebrates. Seminars in Cell and Developmental Biology, 2013, 24, 515.	2.3	O

#	Article	IF	Citations
127	Mitogenomic analyses from ancient DNA. Molecular Phylogenetics and Evolution, 2013, 69, 404-416.	1.2	55
128	Losing ground: past history and future fate of <scp>A</scp> rctic small mammals in a changing climate. Global Change Biology, 2013, 19, 1854-1864.	4.2	46
129	Phenotypes from ancient <scp>DNA</scp> : Approaches, insights and prospects. BioEssays, 2013, 35, 690-695.	1.2	25
130	Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature, 2013, 499, 74-78.	13.7	717
131	A genetically distinct lion (Panthera leo) population from Ethiopia. European Journal of Wildlife Research, 2013, 59, 215-225.	0.7	18
132	A Mitogenomic Phylogeny of Living Primates. PLoS ONE, 2013, 8, e69504.	1.1	217
133	Evidence for a Retroviral Insertion in TRPM1 as the Cause of Congenital Stationary Night Blindness and Leopard Complex Spotting in the Horse. PLoS ONE, 2013, 8, e78280.	1.1	115
134	Capturing protein-coding genes across highly divergent species. BioTechniques, 2013, 54, 321-326.	0.8	175
135	Reply to Bar-Oz and Lev-Yadun: Horse colors in time and space. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1213-E1213.	3.3	1
136	Clovis Age Western Stemmed Projectile Points and Human Coprolites at the Paisley Caves. Science, 2012, 337, 223-228.	6.0	211
137	Ancient biomolecules in Quaternary palaeoecology. Quaternary Science Reviews, 2012, 33, 1-13.	1.4	50
138	Nondestructive DNA Extraction from Museum Specimens. Methods in Molecular Biology, 2012, 840, 93-100.	0.4	21
139	Case Study: Using a Nondestructive DNA Extraction Method to Generate mtDNA Sequences from Historical Chimpanzee Specimens. Methods in Molecular Biology, 2012, 840, 101-110.	0.4	3
140	The genetic history of Europeans. Trends in Genetics, 2012, 28, 496-505.	2.9	102
141	New Life for Ancient DNA. Scientific American, 2012, 307, 46-51.	1.0	8
142	Ancient DNA from marine mammals: Studying long-lived species over ecological and evolutionary timescales. Annals of Anatomy, 2012, 194, 112-120.	1.0	29
143	Special issue ancient DNA. Annals of Anatomy, 2012, 194, 1-2.	1.0	1
144	Ancient DNA extracted from Danish aurochs (Bos primigenius): Genetic diversity and preservation. Annals of Anatomy, 2012, 194, 103-111.	1.0	11

#	Article	IF	Citations
145	A Biochemical–Biophysical Study of Hemoglobins from Woolly Mammoth, Asian Elephant, and Humans. Biochemistry, 2011, 50, 7350-7360.	1.2	12
146	Discovery of lost diversity of paternal horse lineages using ancient DNA. Nature Communications, 2011, 2, 450.	5.8	72
147	Species-specific responses of Late Quaternary megafauna to climate and humans. Nature, 2011, 479, 359-364.	13.7	586
148	Niche partitioning between two sympatric genetically distinct cave bears (Ursus spelaeus and Ursus) Tj ETQq 000 Quaternary International, 2011, 245, 238-248.	rgBT /Ove 0.7	erlock 10 Tf 70
149	Pleistocene bears in the Swabian Jura (Germany): Genetic replacement, ecological displacement, extinctions and survival. Quaternary International, 2011, 245, 225-237.	0.7	80
150	Faunal histories from Holocene ancient DNA. Trends in Ecology and Evolution, 2011, 26, 405-413.	4.2	72
151	Mitochondrial Genomes Reveal Slow Rates of Molecular Evolution and the Timing of Speciation in Beavers (Castor), One of the Largest Rodent Species. PLoS ONE, 2011, 6, e14622.	1.1	46
152	Colours of domestication. Biological Reviews, 2011, 86, 885-899.	4.7	218
153	Multilocus Resolution of Phylogeny and Timescale in the Extant Adaptive Radiation of Hawaiian Honeycreepers. Current Biology, 2011, 21, 1838-1844.	1.8	431
154	Drafting Human Ancestry: What Does the Neanderthal Genome Tell Us about Hominid Evolution? Commentary on Green et al. (2010). Human Biology, 2011, 83, 1-11.	0.4	17
155	Genotypes of predomestic horses match phenotypes painted in Paleolithic works of cave art. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18626-18630.	3.3	85
156	Whole mitochondrial genome sequencing of domestic horses reveals incorporation of extensive wild horse diversity during domestication. BMC Evolutionary Biology, 2011, 11, 328.	3.2	92
157	Molecular breeding of polymerases for resistance to environmental inhibitors. Nucleic Acids Research, 2011, 39, e51-e51.	6.5	58
158	True single-molecule DNA sequencing of a pleistocene horse bone. Genome Research, 2011, 21, 1705-1719.	2.4	114
159	Diversity lost: are all Holarctic large mammal species just relict populations?. Journal of Biology, 2010, 9, 24.	2.7	2
160	The genetic and evolutionary basis of colour variation in vertebrates. Cellular and Molecular Life Sciences, 2010, 67, 2591-2603.	2.4	94
161	A phylogenetic estimate for golden moles (Mammalia, Afrotheria, Chrysochloridae). BMC Evolutionary Biology, 2010, 10, 69.	3.2	29
162	Analysis of ancient human genomes. BioEssays, 2010, 32, 388-391.	1.2	19

#	Article	IF	Citations
163	Diversity lost: are all Holarctic large mammal species just relict populations?. BMC Biology, 2010, 8, 46.	1.7	47
164	Molecular identification of the extinct mountain goat, <i>Oreamnos harringtoni</i> (Bovidae). Boreas, 2010, 39, 18-23.	1.2	5
165	Ancient DNA sequences point to a large loss of mitochondrial genetic diversity in the saiga antelope (<i>Saiga tatarica</i>) since the Pleistocene. Molecular Ecology, 2010, 19, 4863-4875.	2.0	59
166	Substitutions in woolly mammoth hemoglobin confer biochemical properties adaptive for cold tolerance. Nature Genetics, 2010, 42, 536-540.	9.4	86
167	SHORT COMMUNICATION: A phantom extinction? New insights into extinction dynamics of the Donâ€hare <i>Lepus tanaiticus</i> . Journal of Evolutionary Biology, 2010, 23, 2022-2029.	0.8	15
168	Vertebrate DNA in Fecal Samples from Bonobos and Gorillas: Evidence for Meat Consumption or Artefact?. PLoS ONE, 2010, 5, e9419.	1.1	21
169	Influence of Climate Warming on Arctic Mammals? New Insights from Ancient DNA Studies of the Collared Lemming Dicrostonyx torquatus. PLoS ONE, 2010, 5, e10447.	1.1	48
170	Origin and History of Mitochondrial DNA Lineages in Domestic Horses. PLoS ONE, 2010, 5, e15311.	1.1	129
171	Withering Away-25,000 Years of Genetic Decline Preceded Cave Bear Extinction. Molecular Biology and Evolution, 2010, 27, 975-978.	3.5	117
172	Road blocks on paleogenomesâ€"polymerase extension profiling reveals the frequency of blocking lesions in ancient DNA. Nucleic Acids Research, 2010, 38, e161-e161.	6.5	47
173	Genomic DNA Sequences from Mastodon and Woolly Mammoth Reveal Deep Speciation of Forest and Savanna Elephants. PLoS Biology, 2010, 8, e1000564.	2.6	162
174	Next Generation Sequencing of Ancient DNA: Requirements, Strategies and Perspectives. Genes, 2010, 1 , $227-243$.	1.0	157
175	Human Evolution. , 2010, , 529-555.		0
176	A rapid columnâ€based ancient DNA extraction method for increased sample throughput. Molecular Ecology Resources, 2010, 10, 677-683.	2.2	164
177	A Biophysical-Biochemical Comparison of Hemoglobins from Mammoth, Asian Elephant, and Human. Biophysical Journal, 2010, 98, 638a-639a.	0.2	0
178	Computational challenges in the analysis of ancient DNA. Genome Biology, 2010, 11, R47.	13.9	135
179	Polymerase chain reaction: A blessing and a curse for ancient deoxyribonucleic acid research. , 2009, , 284-300.		0
180	Response to Comment by Poinar <i>et al</i> . on "DNA from Pre-Clovis Human Coprolites in Oregon, North Americaâ€, Science, 2009, 325, 148-148.	6.0	34

#	Article	lF	Citations
181	Direct multiplex sequencing (DMPS)-a novel method for targeted high-throughput sequencing of ancient and highly degraded DNA. Genome Research, 2009, 19, 1843-1848.	2.4	102
182	Is amino acid racemization a useful tool for screening for ancient DNA in bone? Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2971-2977.	1.2	71
183	Ecological Change, Range Fluctuations and Population Dynamics during the Pleistocene. Current Biology, 2009, 19, R584-R594.	1.8	208
184	Spurensuche in alter DNA. Molekulare PalÃ B ntologie. Biologie in Unserer Zeit, 2009, 39, 176-184.	0.3	2
185	First DNA sequences from Asian cave bear fossils reveal deep divergences and complex phylogeographic patterns. Molecular Ecology, 2009, 18, 1225-1238.	2.0	80
186	Gene data for endangered species have limitations. Nature, 2009, 459, 774-774.	13.7	0
187	Coat Color Variation at the Beginning of Horse Domestication. Science, 2009, 324, 485-485.	6.0	244
188	Fossil dogs and wolves from Palaeolithic sites in Belgium, the Ukraine and Russia: osteometry, ancient DNA and stable isotopes. Journal of Archaeological Science, 2009, 36, 473-490.	1.2	315
189	Surprising migration and population size dynamics in ancient Iberian brown bears (Ursus arctos). Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5123-5128.	3.3	86
190	Mammoth genomics. Nature, 2008, 456, 330-331.	13.7	9
191	Parallel tagged sequencing on the 454 platform. Nature Protocols, 2008, 3, 267-278.	5.5	289
192	Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene-Pliocene boundary. BMC Evolutionary Biology, 2008, 8, 220.	3.2	261
193	Long DNA sequences and large data sets: investigating the Quaternary via ancient DNA. Quaternary Science Reviews, 2008, 27, 2586-2592.	1.4	18
194	Palaeogenomics. Comptes Rendus - Palevol, 2008, 7, 113-124.	0.1	10
195	DNA from Pre-Clovis Human Coprolites in Oregon, North America. Science, 2008, 320, 786-789.	6.0	283
196	Isotopic evidence for omnivory among European cave bears: Late Pleistocene <i>Ursus spelaeus</i> from the PeÅŸtera cu Oase, Romania. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 600-604.	3.3	94
197	From micrograms to picograms: quantitative PCR reduces the material demands of high-throughput sequencing. Nucleic Acids Research, 2008, 36, e5-e5.	6.5	105
198	Proboscidean Mitogenomics: Chronology and Mode of Elephant Evolution Using Mastodon as Outgroup. PLoS Biology, 2007, 5, e207.	2.6	150

#	Article	IF	CITATIONS
199	Targeted high-throughput sequencing of tagged nucleic acid samples. Nucleic Acids Research, 2007, 35, e97.	6.5	171
200	Learning from the past: evolution of GPCR functions. Trends in Pharmacological Sciences, 2007, 28, 117-121.	4.0	51
201	Animal DNA in PCR reagents plagues ancient DNA research. Journal of Archaeological Science, 2007, 34, 1361-1366.	1.2	142
202	Ancient Biomolecules from Deep Ice Cores Reveal a Forested Southern Greenland. Science, 2007, 317, 111-114.	6.0	393
203	Comparison and optimization of ancient DNA extraction. BioTechniques, 2007, 42, 343-352.	0.8	331
204	Molecular breeding of polymerases for amplification of ancient DNA. Nature Biotechnology, 2007, 25, 939-943.	9.4	115
205	Ancient DNA extraction from bones and teeth. Nature Protocols, 2007, 2, 1756-1762.	5.5	491
206	Sudden replacement of cave bear mitochondrial DNA in the late Pleistocene. Current Biology, 2007, 17, R122-R123.	1.8	71
207	Pleistocene Extinctions: Haunting the Survivors. Current Biology, 2007, 17, R609-R611.	1.8	18
208	A Melanocortin 1 Receptor Allele Suggests Varying Pigmentation Among Neanderthals. Science, 2007, 318, 1453-1455.	6.0	264
209	G Protein-Coupled Time Travel: Evolutionary Aspects of GPCR Research. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2007, 7, 17-25.	3.4	75
210	Multiplex amplification of the mammoth mitochondrial genome and the evolution of Elephantidae. Nature, 2006, 439, 724-727.	13.7	194
211	Multiplex amplification of ancient DNA. Nature Protocols, 2006, 1, 720-728.	5.5	78
212	Mammoths. Current Biology, 2006, 16, R347-R348.	1.8	3
213	Tenrec Phylogeny and the Noninvasive Extraction of Nuclear DNA. Systematic Biology, 2006, 55, 181-194.	2.7	72
214	Nuclear Gene Indicates Coat-Color Polymorphism in Mammoths. Science, 2006, 313, 62-62.	6.0	135
215	Patterns of nucleotide misincorporations during enzymatic amplification and direct large-scale sequencing of ancient DNA. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13578-13584.	3.3	164
216	No Evidence of Neandertal mtDNA Contribution to Early Modern Humans., 2006,, 491-503.		4

#	Article	IF	CITATIONS
217	The Population History of Extant and Extinct Hyenas. Molecular Biology and Evolution, 2005, 22, 2435-2443.	3.5	128
218	Assessing ancient DNA studies. Trends in Ecology and Evolution, 2005, 20, 541-544.	4.2	525
219	A rapid loss of stripes: the evolutionary history of the extinct quagga. Biology Letters, 2005, 1, 291-295.	1.0	46
220	Genomic Sequencing of Pleistocene Cave Bears. Science, 2005, 309, 597-599.	6.0	221
221	Nondestructive DNA extraction method for mitochondrial DNA analyses of museum specimens. BioTechniques, 2004, 36, 814-821.	0.8	136
222	Pleistocene Brown Bears in the Mid-Continent of North America. Science, 2004, 306, 1150-1150.	6.0	16
223	Ongoing Controversy over Romanov Remains. Science, 2004, 306, 407b-410b.	6.0	7
224	Mutations Induced by Ancient DNA Extracts?. Molecular Biology and Evolution, 2004, 21, 1463-1467.	3.5	19
225	Nuclear insertions help and hinder inference of the evolutionary history of gorilla mtDNA. Molecular Ecology, 2004, 14, 179-188.	2.0	46
226	Evidence for Reproductive Isolation between Cave Bear Populations. Current Biology, 2004, 14, 40-43.	1.8	100
227	Lack of phylogeography in European mammals before the last glaciation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12963-12968.	3.3	201
228	Genetic Analyses from Ancient DNA. Annual Review of Genetics, 2004, 38, 645-679.	3.2	1,084
229	No Evidence of Neandertal mtDNA Contribution to Early Modern Humans. PLoS Biology, 2004, 2, e57.	2.6	327
230	Molecular caving. Current Biology, 2003, 13, R693-R695.	1.8	102
231	Phylogeny, diet, and habitat of an extinct ground sloth from Cuchillo CurÃ;, Neuquén Province, southwest Argentina. Quaternary Research, 2003, 59, 364-378.	1.0	64
232	Mitochondrial DNA sequence from an enigmatic gorilla population (Gorilla gorilla uellensis). American Journal of Physical Anthropology, 2003, 121, 361-368.	2.1	19
233	Ancient DNA Analyses Reveal High Mitochondrial DNA Sequence Diversity and Parallel Morphological Evolution of Late Pleistocene Cave Bears. Molecular Biology and Evolution, 2002, 19, 1244-1250.	3.5	94
234	Ancient DNA. Nature Reviews Genetics, 2001, 2, 353-359.	7.7	774

#	Article	IF	CITATIONS
235	Paternity and relatedness in wild chimpanzee communities. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 12890-12895.	3.3	254
236	DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Research, 2001, 29, 4793-4799.	6.5	555
237	A molecular analysis of ground sloth diet through the last glaciation. Molecular Ecology, 2000, 9, 1975-1984.	2.0	144
238	Molecular Coproscopy: Dung and Diet of the Extinct Ground Sloth Nothrotheriops shastensis. , 1998, 281, 402-406.		401
239	Análisis genético del individuo de Chan do Lindeiro: caracterización de su mitogenoma y situación de la muestra en el contexto paleogenético europeo. Cadernos Do Laboratorio Xeoloxico De Laxe, 0, 39, 111-127.	0.0	3
240	Palaeogenome Reveals Genetic Contribution of Extinct Giant Panda to Extant Populations. SSRN Electronic Journal, 0, , .	0.4	0
241	Defining the Island Dwarfing Rate of an Extinct Sicilian Elephant Using Ancient DNA. SSRN Electronic Journal, 0, , .	0.4	0
242	An integrative taxonomic revision and redefinition of Gephyromantis (Laurentomantis) malagasius based on archival DNA analysis reveals four new mantellid frog species from Madagascar. Vertebrate Zoology, 0, 72, 271-309.	2.0	2
243	Simultaneous Barcode Sequencing of Diverse Museum Collection Specimens Using a Mixed RNA Bait Set. Frontiers in Ecology and Evolution, 0, 10, .	1.1	5
244	Taxonomic Identification of Two Poorly Known Lantern Shark Species Based on Mitochondrial DNA From Wet-Collection Paratypes. Frontiers in Ecology and Evolution, 0, 10, .	1.1	6