Auguste Fernandes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/739196/publications.pdf

Version: 2024-02-01

94 papers 2,927 citations

30 h-index 197818 49 g-index

95 all docs 95 docs citations

95 times ranked 3644 citing authors

#	Article	IF	CITATIONS
1	CO2 hydrogenation into CH4 on NiHNaUSY zeolites. Applied Catalysis B: Environmental, 2014, 147, 101-110.	20.2	182
2	One-pot conversion of furfural to useful bio-products in the presence of a Sn,Al-containing zeolite beta catalyst prepared via post-synthesis routes. Journal of Catalysis, 2015, 329, 522-537.	6.2	124
3	Catalytic cyclodehydration of xylose to furfural in the presence of zeolite H-Beta and a micro/mesoporous Beta/TUD-1 composite material. Applied Catalysis A: General, 2010, 388, 141-148.	4.3	122
4	Dehydration of Xylose into Furfural in the Presence of Crystalline Microporous Silicoaluminophosphates. Catalysis Letters, 2010, 135, 41-47.	2.6	104
5	Investigation of a stable synthetic sol–gel CaO sorbent for CO2 capture. Fuel, 2012, 94, 624-628.	6.4	94
6	Aqueous-phase dehydration of xylose to furfural in the presence of MCM-22 and ITQ-2 solid acid catalysts. Applied Catalysis A: General, 2012, 417-418, 243-252.	4.3	92
7	Production of biomass-derived furanic ethers and levulinate esters using heterogeneous acid catalysts. Green Chemistry, 2013, 15, 3367.	9.0	89
8	Acid-Catalysed Conversion of Saccharides into Furanic Aldehydes in the Presence of Three-Dimensional Mesoporous Al-TUD-1. Molecules, 2010, 15, 3863-3877.	3.8	77
9	Modification of MOR by desilication treatments: Structural, textural and acidic characterization. Microporous and Mesoporous Materials, 2010, 131, 350-357.	4.4	72
10	Hydrothermal investigation of the lanthanide (Ln=La, Ce, Pr, Nd, Sm) 2,6-pyridinedicarboxylate system. Inorganica Chimica Acta, 2002, 332, 54-60.	2.4	69
11	Immobilization of halogenated porphyrins and their copper complexes in MCM-41: Environmentally friendly photocatalysts for the degradation of pesticides. Applied Catalysis B: Environmental, 2010, 100, 1-9.	20.2	64
12	Use of HZSM-5 modified with citric acid as acid heterogeneous catalyst for biodiesel production via esterification of oleic acid. Microporous and Mesoporous Materials, 2015, 201, 160-168.	4.4	62
13	Study of new lanthanide complexes of 2,6-pyridinedicarboxylate: synthesis, crystal structure of Ln(Hdipic)(dipic) with Ln=Eu, Gd, Tb, Dy, Ho, Er, Yb, luminescence properties of Eu(Hdipic)(dipic). Polyhedron, 2001, 20, 2385-2391.	2.2	59
14	Zinc(II) phthalocyanines immobilized in mesoporous silica Al-MCM-41 and their applications in photocatalytic degradation of pesticides. Journal of Hazardous Materials, 2012, 233-234, 79-88.	12.4	54
15	Sulfonic-functionalized SBA-15 as an active catalyst for the gas-phase dehydration of Glycerol. Catalysis Communications, 2012, 19, 105-109.	3.3	54
16	Al-containing MCM-41 type materials prepared by different synthesis methods: Hydrothermal stability and catalytic properties. Microporous and Mesoporous Materials, 2006, 94, 56-65.	4.4	52
17	Improvement of toluene catalytic combustion by addition of cesium in copper exchanged zeolites. Applied Catalysis B: Environmental, 2007, 70, 384-392.	20.2	50
18	Synthesis, crystal structures and properties of three new lanthanide 2,6-pyridinedicarboxylate complexes with zero-dimensional structure. Inorganica Chimica Acta, 2008, 361, 2909-2917.	2.4	49

#	Article	IF	CITATIONS
19	On the Track of New Multicomponent Gabapentin Crystal Forms: Synthon Competition and pH Stability. Crystal Growth and Design, 2011, 11, 2325-2334.	3.0	49
20	Desilication of MOR zeolite: Conventional versus microwave assisted heating. Applied Catalysis A: General, 2011, 402, 59-68.	4.3	46
21	Bio-oils and FCC feedstocks co-processing: Impact of phenolic molecules on FCC hydrocarbons transformation over MFI. Fuel, 2011, 90, 467-476.	6.4	45
22	Gas permeability properties of decorated MCM-41/polyethylene hybrids prepared by in-situ polymerization. Journal of Membrane Science, 2012, 415-416, 702-711.	8.2	42
23	Mechanochemistry – A green synthetic methodology leading to metallodrugs, metallopharmaceuticals and bio-inspired metal-organic frameworks. Inorganica Chimica Acta, 2017, 455, 309-318.	2.4	42
24	Grafting luminescent metal-organic species into mesoporous MCM-41 silica from europium(III) tetramethylheptanedionate, Eu(thd)3. Microporous and Mesoporous Materials, 2005, 83, 35-46.	4.4	40
25	Production of biodiesel using HZSM-5 zeolites modified with citric acid and SO 4 2â^² /La 2 O 3. Catalysis Today, 2017, 279, 267-273.	4.4	38
26	Particular characteristics of silver species on Ag-exchanged LTL zeolite in K and H form. Microporous and Mesoporous Materials, 2013, 169, 137-147.	4.4	37
27	Size and ability do matter! Influence of acidity and pore size on the synthesis of hindered halogenated meso-phenyl porphyrins catalysed by porous solid oxides. Chemical Communications, 2014, 50, 6571-6573.	4.1	37
28	Waste Marble Powders as Promising Inexpensive Natural CaO-Based Sorbents for Post-Combustion CO ₂ Capture. Industrial & Engineering Chemistry Research, 2016, 55, 7860-7872.	3.7	37
29	Catalytic dehydration of d-xylose to 2-furfuraldehyde in the presence of Zr-(W,Al) mixed oxides. Tracing by-products using two-dimensional gas chromatography-time-of-flight mass spectrometry. Catalysis Today, 2012, 195, 127-135.	4.4	36
30	Mg- and Mn-MOFs Boost the Antibiotic Activity of Nalidixic Acid. ACS Applied Bio Materials, 2019, 2, 2347-2354.	4.6	35
31	Effect of phenol adsorption on HY zeolite for n-heptane cracking: Comparison with methylcyclohexane. Applied Catalysis A: General, 2010, 385, 178-189.	4.3	32
32	Investigation of the nature of silver species on different Ag-containing NOx reduction catalysts: On the effect of the support. Applied Catalysis B: Environmental, 2014, 150-151, 204-217.	20.2	31
33	Mesoporous zirconia-based mixed oxides as versatile acid catalysts for producing bio-additives from furfuryl alcohol and glycerol. Applied Catalysis A: General, 2014, 487, 148-157.	4.3	31
34	Ethylene polymerisation with zirconocene supported in Al-modified MCM-41: Catalytic behaviour and polymer properties. Journal of Molecular Catalysis A, 2007, 277, 93-101.	4.8	30
35	Biologically Inspired and Magnetically Recoverable Copper Porphyrinic Catalysts: A Greener Approach for Oxidation of Hydrocarbons with Molecular Oxygen. Advanced Functional Materials, 2016, 26, 3359-3368.	14.9	30
36	Packing Interactions and Physicochemical Properties of Novel Multicomponent Crystal Forms of the Anti-Inflammatory Azelaic Acid Studied by X-ray and Solid-State NMR. Crystal Growth and Design, 2016, 16, 154-166.	3.0	30

3

#	Article	IF	Citations
37	Reduction of NO with metal-doped carbon aerogels. Applied Catalysis B: Environmental, 2009, 88, 135-141.	20.2	28
38	An insight into dapsone co-crystals: sulfones as participants in supramolecular interactions. CrystEngComm, 2013, 15, 8173.	2.6	28
39	Effects of oxidant acid treatments on carbon-templated hierarchical SAPO-11 materials: Synthesis, characterization and catalytic evaluation in n-decane hydroisomerization. Applied Catalysis A: General, 2014, 485, 230-237.	4.3	28
40	Microwave synthesis of SAPO-11 materials for long chain n -alkanes hydroisomerization: Effect of physical parameters and chemical gel composition. Applied Catalysis A: General, 2017, 542, 28-37.	4.3	26
41	Phosphor powders elaborated by spray-pyrolysis: Characterizations and possible applications. Optical Materials, 2006, 28, 597-601.	3.6	25
42	Influence of calcination temperature on catalytic, acid and textural properties of SO42â^'/La2O3/HZSM-5 type catalysts for biodiesel production by esterification. Microporous and Mesoporous Materials, 2018, 270, 189-199.	4.4	24
43	Tailoring Synthetic Sol–Gel CaO Sorbents with High Reactivity or High Stability for Ca-Looping CO ₂ Capture. Industrial & Engineering Chemistry Research, 2019, 58, 8484-8494.	3.7	24
44	Bulk and composite catalysts combining BEA topology and mesoporosity for the valorisation of furfural. Catalysis Science and Technology, 2016, 6, 7812-7829.	4.1	23
45	New Multicomponent Sulfadimethoxine Crystal Forms: Sulfonamides as Participants in Supramolecular Interactions. Crystal Growth and Design, 2016, 16, 1879-1892.	3.0	23
46	1Hâ€"31P HETCOR NMR elucidates the nature of acid sites in zeolite HZSM-5 probed with trimethylphosphine oxide. Chemical Communications, 2019, 55, 12635-12638.	4.1	23
47	Enhancement of sintering resistance of CaO-based sorbents using industrial waste resources for Ca-looping in the cement industry. Separation and Purification Technology, 2020, 235, 116190.	7.9	23
48	Mesoporous Ga-MCM-41: A very efficient support for the heterogenisation of metallocene catalysts. Catalysis Communications, 2008, 10, 71-73.	3.3	21
49	Gas-phase dehydration of glycerol over thermally-stable SAPO-40 catalyst. RSC Advances, 2015, 5, 10667-10674.	3.6	21
50	Mesoporous Ga-MCM-41 as support for metallocene catalysts: Acidity–activity relationship. Journal of Molecular Catalysis A, 2009, 310, 1-8.	4.8	20
51	TUD-1 type aluminosilicate acid catalysts for 1-butene oligomerisation. Fuel, 2017, 209, 371-382.	6.4	20
52	Dehydration of methanol to dimethyl ether over modified vermiculites. Comptes Rendus Chimie, 2015, 18, 1211-1222.	0.5	19
53	A recyclable hybrid manganese(III) porphyrin magnetic catalyst for selective olefin epoxidation using molecular oxygen. Journal of Porphyrins and Phthalocyanines, 2018, 22, 331-341.	0.8	19
54	Immobilization of 5,10,15,20-tetrakis-(2-fluorophenyl)porphyrin into MCM-41 and NaY: Routes toward photodegradation of pesticides. Pure and Applied Chemistry, 2009, 81, 2025-2033.	1.9	18

#	Article	IF	Citations
55	Gas-phase dehydration of glycerol over hierarchical silicoaluminophosphate SAPO-40. Catalysis Communications, 2017, 95, 16-20.	3.3	18
56	Gas-phase conversion of glycerol to allyl alcohol over vanadium-supported zeolite beta. Catalysis Communications, 2019, 127, 20-24.	3.3	18
57	MFI Acid Catalysts with Different Crystal Sizes and Porosity for the Conversion of Furanic Compounds in Alcohol Media. ChemCatChem, 2017, 9, 2747-2759.	3.7	17
58	One-pot hydrogen production and cascade reaction of furfural to bioproducts over bimetallic Pd-Ni TUD-1 type mesoporous catalysts. Applied Catalysis B: Environmental, 2018, 237, 521-537.	20.2	17
59	Catalytic isomerization of d-glucose to d-fructose over BEA base zeotypes using different energy supply methods. Catalysis Today, 2021, 362, 162-174.	4.4	17
60	An elegant way to increase acidity in SAPOs: use of methylamine as co-template during synthesis. Studies in Surface Science and Catalysis, 2008, 174, 281-284.	1.5	15
61	Oxidative dehydrogenation of butane over substoichiometric magnesium vanadate catalysts prepared by citrate route. Journal of Non-Crystalline Solids, 2010, 356, 1488-1497.	3.1	15
62	Effect of the amount of SO42-/La2O3 on HZSM-5 activity for esterification reaction. Catalysis Today, 2020, 344, 150-157.	4.4	15
63	Functionalization of Mesoporous MCMâ€41 (Nano)particles: Preparation Methodologies, Role on Catalytic Features, and Dispersion Within Polyethylene Nanocomposites. ChemCatChem, 2013, 5, 966-976.	3.7	14
64	Two new aluminophosphates, IST-1 and IST-2: First examples of a dual templating role of water and methylamine in generating microporous structures. Microporous and Mesoporous Materials, 2006, 90, 112-128.	4.4	13
65	Binol derivative ligand immobilized onto silica: Alkyl-cyanohydrin synthesis via sequential hydroformylation/heterogeneous cyanosilylation reactions. Catalysis Today, 2013, 218-219, 99-106.	4.4	13
66	Cost-efficient method for unsymmetrical meso-aryl porphyrins and iron oxide-porphyrin hybrids prepared thereof. Dalton Transactions, 2016, 45, 16211-16220.	3.3	13
67	Blending Wastes of Marble Powder and Dolomite Sorbents for Calcium-Looping CO2 Capture under Realistic Industrial Calcination Conditions. Materials, 2021, 14, 4379.	2.9	13
68	NO _x SCR with decane using Ag–MFI catalysts: on the effect of silver content and co-cation presence. Catalysis Science and Technology, 2016, 6, 3038-3048.	4.1	12
69	Optimized preparation and regeneration of MFI type base catalysts for <scp>d</scp> -glucose isomerization in water. Catalysis Science and Technology, 2020, 10, 3232-3246.	4.1	12
70	Mesostructured Catalysts Based on the BEA Topology for Olefin Oligomerisation. ChemCatChem, 2018, 10, 2741-2754.	3.7	11
71	Olefin oligomerisation over nanocrystalline MFI-based micro/mesoporous zeotypes synthesised via bottom-up approaches. Renewable Energy, 2019, 138, 820-832.	8.9	11
72	Renewable bio-based routes to $\hat{1}^3$ -valerolactone in the presence of hafnium nanocrystalline or hierarchical microcrystalline zeotype catalysts. Journal of Catalysis, 2022, 406, 56-71.	6.2	11

#	Article	IF	CITATIONS
73	Grafting 4f and 3d metal complexes into mesoporous MCM-41 silica by wet impregnation and by chemical vapour infiltration. Journal of Alloys and Compounds, 2004, 374, 303-306.	5.5	10
74	Towards a Deep Desilication/Dealumination of NUâ€10 Zeolite: Shapeâ€Selectivity Regulation. European Journal of Inorganic Chemistry, 2012, 2012, 4190-4199.	2.0	10
75	Catalytic Conversion of 1â€butene over Modified Versions of Commercial ZSMâ€5 to Produce Clean Fuels and Chemicals. ChemCatChem, 2019, 11, 4196-4209.	3.7	10
76	Fluidized bed plasma for pre-treatment of Co-ferrierite catalysts: An approach to NOx abatement. Catalysis Today, 2011, 176, 234-238.	4.4	9
77	Monitoring cobalt ions siting in BEA and FER zeolites by in-situ UV–Vis spectroscopy: A DRS study. Inorganica Chimica Acta, 2017, 455, 568-574.	2.4	9
78	Zooming in with QSPR on Friedel-Crafts acylation reactions over modified BEA zeolites. Molecular Catalysis, 2019, 476, 110495.	2.0	8
79	Conversion of glycerol over vanadium supported beta zeolite: Role of acidity and alkali cations. Microporous and Mesoporous Materials, 2022, 329, 111536.	4.4	8
80	\hat{l}^3 -Valerolactone synthesis from \hat{l} ±-angelica lactone and levulinic acid over biobased multifunctional nanohybrid catalysts. Catalysis Today, 2022, 394-396, 268-281.	4.4	7
81	Catalytic Transfer Hydrogenation and Acid Reactions of Furfural and 5-(Hydroxymethyl)furfural over Hf-TUD-1 Type Catalysts. Molecules, 2021, 26, 7203.	3.8	7
82	Incorporation of niobium in SAPO-11 materials: Synthesis and characterization. Microporous and Mesoporous Materials, 2011, 143, 284-290.	4.4	6
83	Modified Versions of AMâ€4 for the Aqueous Phase Isomerization of Aldoâ€5accharides. European Journal of Inorganic Chemistry, 2020, 2020, 1579-1588.	2.0	6
84	Pt Nanoparticles Dispersed in a Mesostrucured Silica Matrix: Towards Self-Organized 3D Nanocomposite. ChemPhysChem, 2003, 4, 514-517.	2.1	5
85	Innovative route for the preparation of high-performance polyolefin materials based on unique dendrimeric silica particles. Polymer Chemistry, 2021, 12, 4546-4556.	3.9	5
86	Aluminum Containing Dendrimeric Silica Nanoparticles as Promising Metallocene Catalyst Supports for Ethylene Polymerization. ChemCatChem, 2018, 10, 3761-3769.	3.7	4
87	Ball Milling Modified SAPOâ€11 Based Catalysts for <i>n</i> â€Decane Hydroisomerization. ChemistrySelect, 2019, 4, 6713-6718.	1.5	4
88	Reusable MCM-41 Immobilized Rh(I) Hydroformylation Catalysts Built on Binaphthyl-based Phosphoramidite and Phosphite Ligands. Current Organic Chemistry, 2016, 20, 1445-1453.	1.6	4
89	Unique stiffness-deformability features of dendrimeric silica reinforced HDPE nanocomposites obtained by an innovative route. Microporous and Mesoporous Materials, 2022, 331, 111619.	4.4	3
90	Unusual framework stabilization of Cu(II) and Cu(I) ions in a novel copper-substituted aluminophosphate with AEN topology prepared by one pot synthesis. Studies in Surface Science and Catalysis, 2007, , 185-192.	1.5	2

#	Article	IF	CITATIONS
91	Surface photochemistry: Ketones included within a channel type solid support, the aluminophosphate AlPO4-5. Journal of Molecular Structure, 2007, 831, 1-9.	3.6	2
92	Hydroisomerization of n-decane over SAPO-11 catalysts synthesized with methylamine as co-template. Reaction Kinetics, Mechanisms and Catalysis, 2009, 99, 183.	1.7	2
93	Methylamine as true template and TEAOH as purifying agent: unexpected roles of current organic additives in the hydrothermal synthesis of microporous aluminophosphates. Studies in Surface Science and Catalysis, 2007, 170, 456-463.	1.5	1
94	Heterogeneization of alpha diimines nickel catalysts for the polymerization of ethylene and methylmethacrylate. E-Polymers, $2010,10,10$	3.0	0