Liwen Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7391631/publications.pdf Version: 2024-02-01

LINNEN TAN

#	Article	IF	CITATIONS
1	Free-standing Na2C6O6/MXene composite paper for high-performance organic sodium-ion batteries. Nano Research, 2023, 16, 458-465.	10.4	17
2	Metal-organic frameworks and their derivatives in stable Zn metal anodes for aqueous Zn-ion batteries. ChemPhysMater, 2022, 1, 252-263.	2.8	25
3	Highly reversible lithium metal-organic battery enabled by a freestanding MXene interlayer. Journal of Power Sources, 2022, 521, 230963.	7.8	7
4	Long-life and dendrite-free zinc metal anode enabled by a flexible, green and self-assembled zincophilic biomass engineered MXene based interface. Chemical Engineering Journal, 2022, 431, 134277.	12.7	72
5	MXene/Organics Heterostructures Enable Ultrastable and High-Rate Lithium/Sodium Batteries. ACS Applied Materials & Interfaces, 2022, 14, 2979-2988.	8.0	46
6	Self-assembled, highly-lithiophilic and well-aligned biomass engineered MXene paper enables dendrite-free lithium metal anode in carbonate-based electrolyte. Journal of Energy Chemistry, 2022, 69, 221-230.	12.9	26
7	Lithiophilic perovskite-CaTiO3 engineered separator for dendrite-suppressing 5ÂV-class lithium metal batteries with commercial carbonate-based electrolyte. Applied Surface Science, 2022, 583, 152430.	6.1	8
8	Room-temperature liquid metal engineered iron current collector enables stable and dendrite-free sodium metal batteries in carbonate electrolytes. Journal of Materials Science and Technology, 2022, 115, 156-165.	10.7	18
9	Highly reversible Mg metal anodes enabled by interfacial liquid metal engineering for high-energy Mg-S batteries. Energy Storage Materials, 2022, 48, 447-457.	18.0	46
10	Highly reversible and safe lithium metal batteries enabled by Non-flammable All-fluorinated carbonate electrolyte conjugated with 3D flexible MXene-based lithium anode. Chemical Engineering Journal, 2022, 440, 135818.	12.7	23
11	LiF-rich and self-repairing interface induced by MgF2 engineered separator enables dendrite-free lithium metal batteries. Chemical Engineering Journal, 2022, 442, 136243.	12.7	31
12	Ultrastable and Highâ€Rate 2D Siloxene Anode Enabled by Covalent Organic Framework Engineering for Advanced Lithiumâ€lon Batteries. Small Methods, 2022, 6, e2200306.	8.6	18
13	Review of room-temperature liquid metals for advanced metal anodes in rechargeable batteries. Energy Storage Materials, 2022, 50, 473-494.	18.0	35
14	Interfacial passivation by room-temperature liquid metal enabling stable 5 V-class lithium-metal batteries in commercial carbonate-based electrolyte. Energy Storage Materials, 2021, 34, 12-21.	18.0	85
15	Design of Robust, Lithiophilic, and Flexible Inorganicâ€Polymer Protective Layer by Separator Engineering Enables Dendriteâ€Free Lithium Metal Batteries with LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ Cathode. Small, 2021, 17, e2007717.	10.0	108
16	Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries. Nano Research, 2021, 14, 3576-3584.	10.4	95
17	Design of safe, long-cycling and high-energy lithium metal anodes in all working conditions: Progress, challenges and perspectives. Energy Storage Materials, 2021, 38, 157-189.	18.0	52
18	Covalent Organic Frameworks and Their Derivatives for Better Metal Anodes in Rechargeable Batteries. ACS Nano, 2021, 15, 12741-12767.	14.6	71

LIWEN TAN

#	Article	IF	CITATIONS
19	Two-Dimensional Silicon/Carbon from Commercial Alloy and CO ₂ for Lithium Storage and Flexible Ti ₃ C ₂ T _{<i>x</i>} MXene-Based Lithium–Metal Batteries. ACS Nano, 2020, 14, 17574-17588.	14.6	108
20	Preparation and Properties of an Alginate-Based Fiber Separator for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 38175-38182.	8.0	64
21	Enhanced flame-retardant properties of cellulose fibers by incorporation of acid-resistant magnesium-oxide microcapsules. Carbohydrate Polymers, 2017, 176, 246-256.	10.2	50
22	Influence of Na+ and Ca2+ on flame retardancy, thermal degradation, and pyrolysis behavior of cellulose fibers. Carbohydrate Polymers, 2017, 157, 1594-1603.	10.2	42
23	Effects of divalent metal ions on the flame retardancy and pyrolysis products of alginate fibres. Polymer Degradation and Stability, 2012, 97, 1034-1040.	5.8	110
24	Pyrolysis products and thermal degradation mechanism of intrinsically flame-retardant calcium alginate fibre. Polymer Degradation and Stability, 2011, 96, 936-942.	5.8	119