
David Sheehan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7391421/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochemical Journal, 2001, 360, 1-16.	1.7	1,449
2	Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochemical Journal, 2001, 360, 1.	1.7	950
3	Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquatic Toxicology, 2010, 100, 178-186.	1.9	264
4	Antioxidative effect of added tea catechins on susceptibility of cooked red meat, poultry and fish patties to lipid oxidation. Food Research International, 2001, 34, 651-657.	2.9	168
5	Assessment of a glutathione S-transferase and related proteins in the gill and digestive gland of Mytilus edulis(L.), as potential organic pollution biomarkers. Biomarkers, 1997, 2, 51-56.	0.9	132
6	Proteomics as a route to identification of toxicity targets in environmental toxicology. Proteomics, 2006, 6, 5597-5604.	1.3	129
7	Anti-oxidant activity of added tea catechins on lipid oxidation of raw minced red meat, poultry and fish muscle. International Journal of Food Science and Technology, 2001, 36, 685-692.	1.3	126
8	Effects of seasonality on xenobiotic and antioxidant defence mechanisms of bivalve molluscs. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1999, 123, 193-199.	0.5	121
9	Carbonylation and glutathionylation of proteins in the blue mussel Mytilus edulis detected by proteomic analysis and Western blotting: Actin as a target for oxidative stress. Aquatic Toxicology, 2005, 73, 315-326.	1.9	114
10	Toxicity of copper oxide nanoparticles in the blue mussel, Mytilus edulis: A redox proteomic investigation. Chemosphere, 2014, 108, 289-299.	4.2	98
11	Gills are an initial target of zinc oxide nanoparticles in oysters Crassostrea gigas, leading to mitochondrial disruption and oxidative stress. Aquatic Toxicology, 2014, 153, 27-38.	1.9	84
12	Glutathione transferase-like proteins encoded in genomes of yeasts and fungi: insights into evolution of a multifunctional protein superfamily. FEMS Microbiology Letters, 2005, 242, 1-12.	0.7	81
13	Protein carbonylation and heat shock response in Ruditapes decussatus following p,p′-dichlorodiphenyldichloroethylene (DDE) exposure: A proteomic approach reveals that DDE causes oxidative stress. Aquatic Toxicology, 2006, 77, 11-18.	1.9	77
14	Sonodisruption of re-assembled casein micelles at different pH values. Ultrasonics Sonochemistry, 2009, 16, 644-648.	3.8	70
15	Ecotoxicoproteomics: A decade of progress in our understanding of anthropogenic impact on the environment. Journal of Proteomics, 2019, 198, 66-77.	1.2	66
16	Redox proteomics in the blue mussel Mytilus edulis: Carbonylation is not a pre-requisite for ubiquitination in acute free radical-mediated oxidative stress. Aquatic Toxicology, 2006, 79, 325-333.	1.9	65
17	Detection of redox-based modification in two-dimensional electrophoresis proteomic separations. Biochemical and Biophysical Research Communications, 2006, 349, 455-462.	1.0	64
18	Exposure of the blue mussel, Mytilus edulis, to gold nanoparticles and the pro-oxidant menadione. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2010, 151, 167-174.	1.3	57

#	Article	IF	CITATIONS
19	Effect of oxidative stress on protein thiols in the blue mussel <i>Mytilus edulis</i> : Proteomic identification of target proteins. Proteomics, 2007, 7, 3395-3403.	1.3	56
20	Oxidative stress in response to xenobiotics in the blue mussel Mytilus edulis L.: Evidence for variation along a natural salinity gradient of the Baltic Sea. Aquatic Toxicology, 2007, 82, 63-71.	1.9	55
21	Seasonal variation in the antioxidant defence systems of gill and digestive gland of the blue mussel, Mytilus edulis. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1996, 114, 99-103.	0.5	52
22	Studies on isoenzymes of glutathione S-transferase in the digestive gland of Mytilus galloprovincialis with exposure to pollution. Marine Environmental Research, 1995, 39, 241-244.	1.1	51
23	Proteomic evaluation of citrate-coated silver nanoparticles toxicity in Daphnia magna. Analyst, The, 2014, 139, 1678-1686.	1.7	51
24	Alkaline pH does not disrupt re-assembled casein micelles. Food Chemistry, 2009, 116, 929-932.	4.2	43
25	Hepatic biomarkers of sediment-associated pollution in juvenile turbot, Scophthalmus maximus L Marine Environmental Research, 2007, 64, 191-208.	1.1	42
26	Variability of heat shock proteins and glutathione S-transferase in gill and digestive gland of blue mussel, Mytilus edulis. Marine Environmental Research, 2003, 56, 585-597.	1.1	41
27	A comparative study of tea catechins and $\hat{i}\pm$ -tocopherol as antioxidants in cooked beef and chicken meat. European Food Research and Technology, 2001, 213, 286-289.	1.6	40
28	Comparison of pH-dependent sonodisruption of re-assembled casein micelles by 35 and 130kHz ultrasounds. Journal of Food Engineering, 2009, 95, 505-509.	2.7	40
29	Redox proteomics. Expert Review of Proteomics, 2010, 7, 1-4.	1.3	40
30	Proteomic identification of tyrosine nitration targets in kidney of spontaneously hypertensive rats. Proteomics, 2007, 7, 4555-4564.	1.3	39
31	Response surface optimization of an artificial neural network for predicting the size of re-assembled casein micelles. Computers and Electronics in Agriculture, 2009, 68, 216-221.	3.7	39
32	Protective role of exogenous phytohormones on redox status in pea seedlings under copper stress. Journal of Plant Physiology, 2018, 221, 51-61.	1.6	37
33	Redox Modulation of Integrin αIIbβ3 Involves a Novel Allosteric Regulation of Its Thiol Isomerase Activity. Biochemistry, 2004, 43, 473-480.	1.2	35
34	Ubiquitination and carbonylation as markers of oxidative-stress in Ruditapes decussatus. Marine Environmental Research, 2008, 66, 95-97.	1.1	32
35	Effect of permethrin, anthracene and mixture exposure on shell components, enzymatic activities and proteins status in the Mediterranean clam Venerupis decussata. Aquatic Toxicology, 2015, 158, 22-32.	1.9	32
36	Role of the ubiquitin-proteasome pathway and some peptidases during seed germination and copper stress in bean cotyledons. Plant Physiology and Biochemistry, 2014, 76, 77-85.	2.8	30

#	Article	IF	CITATIONS
37	Glutathione S-transferases from the white-rot fungus, Phanerochaete chrysosporium. Biochemical Journal, 1997, 324, 243-248.	1.7	29
38	Proteomic Profiling of Perturbed Protein Sulfenation in Renal Medulla of the Spontaneously Hypertensive Rat. Journal of Proteome Research, 2010, 9, 2678-2687.	1.8	28
39	A redox proteomic investigation of oxidative stress caused by benzoylecgonine in the freshwater bivalve <i>Dreissena polymorpha</i> . Drug Testing and Analysis, 2013, 5, 646-656.	1.6	27
40	Role of endocytotic uptake routes in impacting the ROS-related toxicity of silver nanoparticles to Mytilus galloprovincialis: A redox proteomic investigation. Aquatic Toxicology, 2018, 200, 21-27.	1.9	27
41	Selection of thiol- and disulfide-containing proteins of Escherichia coli on activated thiol-Sepharose. Analytical Biochemistry, 2010, 398, 245-253.	1.1	26
42	Ion-Transfer Voltammetric Behavior of Protein Digests at Liquid Liquid Interfaces. Analytical Chemistry, 2010, 82, 258-264.	3.2	26
43	Redox Remodeling Is Pivotal in Murine Diaphragm Muscle Adaptation to Chronic Sustained Hypoxia. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 12-23.	1.4	25
44	Shotgun proteomics for the preliminary identification of biomarkers of beef sensory tenderness, juiciness and chewiness from plasma and muscle of young Limousin-sired bulls. Meat Science, 2021, 176, 108488.	2.7	25
45	Cellular responses in primary epidermal cultures from rainbow trout exposed to zinc chloride. Ecotoxicology and Environmental Safety, 2006, 65, 332-341.	2.9	23
46	Ultrasound-assisted generation of ACE-inhibitory peptides from casein hydrolyzed with nanoencapsulated protease. Journal of the Science of Food and Agriculture, 2011, 91, 2112-2116.	1.7	23
47	Environmental OMICS: Current Status and Future Directions. Journal of Integrated OMICS, 2013, 3, .	0.5	22
48	Variable expression of glutathioneS-transferase isoenzymes in the fungus,Mucor circinelloides. FEMS Microbiology Letters, 1999, 170, 13-17.	0.7	21
49	Chronic sustained hypoxia-induced redox remodeling causes contractile dysfunction in mouse sternohyoid muscle. Frontiers in Physiology, 2015, 6, 122.	1.3	21
50	Chronic intermittent hypoxia increases rat sternohyoid muscle NADPH oxidase expression with attendant modest oxidative stress. Frontiers in Physiology, 2015, 6, 15.	1.3	21
51	Neutral red retention time assay in determination of toxicity ofÂnanoparticles. Marine Environmental Research, 2015, 111, 158-161.	1.1	21
52	Toxicity assessment of ZnO-decorated Au nanoparticles in the Mediterranean clam Ruditapes decussatus. Aquatic Toxicology, 2017, 188, 10-19.	1.9	21
53	Protein carbonylation in kidney medulla of the spontaneously hypertensive rat. Proteomics - Clinical Applications, 2009, 3, 338-346.	0.8	19
54	Ubiquitination and carbonylation of proteins in the clam Ruditapes decussatus, exposed to nonylphenol using redox proteomics. Chemosphere, 2010, 81, 1212-1217.	4.2	19

#	Article	IF	CITATIONS
55	Proteomic analysis of an environmental isolate of Rhodotorula mucilaginosa after arsenic and cadmium challenge: Identification of a protein expression signature for heavy metal exposure. Journal of Proteomics, 2016, 141, 47-56.	1.2	19
56	The Potential of Proteomics for Providing New Insights into Environmental Impacts on Human Health. Reviews on Environmental Health, 2007, 22, 175-94.	1.1	18
57	Effects of anthracene on filtration rates, antioxidant defense system, and redox proteomics in the Mediterranean clam Ruditapes decussatus (Mollusca: Bivalvia). Environmental Science and Pollution Research, 2015, 22, 10956-10968.	2.7	18
58	Redox Proteomics Changes in the Fungal Pathogen Trichosporon asahii on Arsenic Exposure: Identification of Protein Responses to Metal-Induced Oxidative Stress in an Environmentally-Sampled Isolate. PLoS ONE, 2014, 9, e102340.	1.1	18
59	Glutathione S-transferases of the yeast Yarrowia lipolytica have unusually large molecular mass. Biochemical Journal, 1998, 333, 839-845.	1.7	17
60	Identification of a multixenobiotic resistance mechanism in primary cultured epidermal cells from Oncorhynchus mykiss and the effects of environmental complex mixtures on its activity. Aquatic Toxicology, 2005, 73, 115-127.	1.9	17
61	Covalent selection of the thiol proteome on activated thiol sepharose: A robust tool for redox proteomics. Talanta, 2010, 80, 1569-1575.	2.9	17
62	Application of iTRAQ Reagents to Relatively Quantify the Reversible Redox State of Cysteine Residues. International Journal of Proteomics, 2012, 2012, 1-9.	2.0	17
63	Effects of permethrin exposure on antioxidant enzymes and protein status in Mediterranean clams Ruditapes decussatus. Environmental Science and Pollution Research, 2014, 21, 4461-4472.	2.7	17
64	Biochemical and biomolecular effects induced by a static magnetic field in Saccharomyces cerevisiae: Evidence for oxidative stress. PLoS ONE, 2019, 14, e0209843.	1.1	17
65	Microbial glutathione S-transferases. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1993, 104, 1-6.	0.2	15
66	Evidence for Alpha and Mu class glutathione S-transferases in a number of fungal species. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1993, 104, 7-13.	0.2	15
67	A Two-Species Biomarker Model for the Assessment of Sediment Toxicity in the Marine and Estuarine Environment Using the Comet Assay. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2006, 41, 939-953.	0.9	15
68	Enhanced thermal and ultrasonic stability of a fungal protease encapsulated within biomimetically generated silicate nanospheres. Biochimica Et Biophysica Acta - General Subjects, 2010, 1800, 459-465.	1.1	15
69	Early life exposure to chronic intermittent hypoxia causes upper airway dilator muscle weakness, which persists into young adulthood. Experimental Physiology, 2015, 100, 947-966.	0.9	15
70	Redox biology response in germinating Phaseolus vulgaris seeds exposed to copper: Evidence for differential redox buffering in seedlings and cotyledon. PLoS ONE, 2017, 12, e0184396.	1.1	14
71	Novel static magnetic field effects on green chemistry biosynthesis of silver nanoparticles in Saccharomyces cerevisiae. Scientific Reports, 2021, 11, 20078.	1.6	14
72	Nucleotide and deduced amino acid sequences of Rhizobium meliloti 102F34 lacZ gene: comparison with prokaryotic β-galactosidases and human β-glucuronidase. Gene, 1994, 141, 91-96.	1.0	13

#	Article	IF	CITATIONS
73	Proteomics in investigation of protein nitration in kidney disease: Technical challenges and perspectives from the spontaneously hypertensive rat. Mass Spectrometry Reviews, 2011, 30, 121-141.	2.8	13
74	Redox proteomic insights into involvement of clathrin-mediated endocytosis in silver nanoparticles toxicity to Mytilus galloprovincialis. PLoS ONE, 2018, 13, e0205765.	1.1	13
75	Purification and characterisation of acetolactate decarboxylase fromLeuconostoc lactisNCW1. FEMS Microbiology Letters, 2001, 194, 245-249.	0.7	12
76	Transcriptome signatures of p,p´-DDE-induced liver damage in Mus spretus mice. Environmental Pollution, 2018, 238, 150-167.	3.7	12
77	Redox proteomic analysis of <i>mytilus edulis</i> gills: effects of the pharmaceutical diclofenac on a nonâ€ŧarget organism. Drug Testing and Analysis, 2015, 7, 957-966.	1.6	11
78	The effects of anthracene on biochemical responses of Mediterranean mussels <i>Mytilus galloprovincialis</i> . Chemistry and Ecology, 2017, 33, 309-324.	0.6	11
79	Fast Protein Liquid Chromatography. Methods in Molecular Biology, 2017, 1485, 365-373.	0.4	11
80	Shotgun redox proteomics in sub-proteomes trapped on functionalised beads: Identification of proteins targeted by oxidative stress. Marine Environmental Research, 2010, 69, S25-S27.	1.1	10
81	Online homology modelling as a means of bridging the sequence-structure gap. Bioengineered Bugs, 2011, 2, 299-305.	2.0	10
82	Comparison of thiol subproteome of the vent mussel Bathymodiolus azoricus from different Mid-Atlantic Ridge vent sites. Science of the Total Environment, 2012, 437, 413-421.	3.9	10
83	Gold Octahedra nanoparticles (Au_0.03 and Au_0.045): Synthesis and impact on marine clams Ruditapes decussatus. Aquatic Toxicology, 2018, 202, 97-104.	1.9	10
84	Binding of 2-hydroxy-5-nitrobenzyl alcohol to rat alpha class glutathione S-transferases; evidence for binding at tryptophan 21. BBA - Proteins and Proteomics, 1996, 1293, 185-190.	2.1	9
85	Assessment of RNAlater® as a Potential Method to Preserve Bovine Muscle Proteins Compared with Dry Ice in a Proteomic Study. Foods, 2019, 8, 60.	1.9	9
86	Characterization of recombinant acetolactate synthase from Leuconostoc lactis NCW1. Enzyme and Microbial Technology, 1999, 25, 61-67.	1.6	8
87	Proteomic responses to metal-induced oxidative stress in hydrothermal vent-living mussels, Bathymodiolus sp., on the Southwest Indian Ridge. Marine Environmental Research, 2014, 96, 29-37.	1.1	8
88	Nanomaterials as Emerging Environmental Threats. Current Chemical Biology, 2010, 4, 151-160.	0.2	8
89	Effect of divalent metal cations on <u>Rhizobium meliloti</u> B-galactosidase. Biochemical Society Transactions, 1991, 19, 19S-19S.	1.6	7
90	Purification and some characteristics of a recombinant dimeric rhizobium meliloti β-galactosidase expressed in escherichia coli. Enzyme and Microbial Technology, 2001, 28, 682-688.	1.6	7

#	ARTICLE	IF	CITATIONS
91	Redox Proteomics in Study of Kidney-Associated Hypertension: New Insights to Old Diseases. Antioxidants and Redox Signaling, 2012, 17, 1560-1570.	2.5	7
92	Application of a redoxâ€proteomics toolbox to <i>Daphnia magna</i> challenged with model proâ€oxidants copper and paraquat. Environmental Toxicology and Chemistry, 2015, 34, 84-91.	2.2	7
93	Zinc oxide, titanium dioxide and C60 fullerene nanoparticles, alone and in mixture, differently affect biomarker responses and proteome in the clam Ruditapes philippinarum. Science of the Total Environment, 2022, 838, 155873.	3.9	7
94	Effects of 2-(4-Methoxyphenyl)-5, 6-trimethylene-4H-1, 3, 2-oxathiaphosphorine-2-sulfide on biomarkers of Mediterranean clams Ruditapes decussatus. Ecotoxicology and Environmental Safety, 2015, 120, 263-269.	2.9	6
95	The clinical potential of thiol redox proteomics. Expert Review of Proteomics, 2020, 17, 41-48.	1.3	6
96	Calcium and Citrate Protect Pisum sativum Roots against Copper Toxicity by Regulating the Cellular Redox Status. Journal of Soil Science and Plant Nutrition, 0, , 1.	1.7	5
97	Seasonal variations in the levels of antioxidant enzymes in mytilus edulis. Biochemical Society Transactions, 1995, 23, 354S-354S.	1.6	4
98	Fast Protein Liquid Chromatography. , 2004, 244, 253-258.		4
99	Gold Nanoparticles and Oxidative Stress in the Blue Mussel, Mytilus edulis. Methods in Molecular Biology, 2013, 1028, 197-203.	0.4	4
100	Purification and basic properties of the aspartate aminotransferases from a variety of sources. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1981, 69, 737-746.	0.2	3
101	Purification of α-acetolactate synthase from <i>Leuconostoc lactis</i> NCW1. Biochemical Society Transactions, 1995, 23, 366S-366S.	1.6	3
102	Structural investigation of a glutathione binding site using computational analysis. Biochemical Society Transactions, 1995, 23, 382S-382S.	1.6	3
103	Ligand-binding properties of the glutathione-binding protein of the mussel, Mytilus edulis. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1996, 115, 439-443.	0.7	3
104	The 110kDa glutathione transferase of Yarrowia lipolytica is encoded by a homologue of the TEF3 gene from Saccharomyces cerevisiae: Cloning, expression, and homology modeling of the recombinant protein. Biochemical and Biophysical Research Communications, 2005, 337, 1125-1132.	1.0	3
105	Chemical modification at subunit 1 of rat kidney Alpha class glutathione transferase with 2,3,5,6-tetrachloro-1,4-benzoquinone: Close structural connectivity between glutathione conjugation activity and non-substrate ligand binding. Biochemical Pharmacology, 2006, 71, 1629-1636.	2.0	3
106	Subunit structure of fungal Glutathione-S-Transferases. Biochemical Society Transactions, 1991, 19, 17S-17S.	1.6	2
107	Purification of glutathione S-transferase from the fungus Alternaria alternata. Biochemical Society Transactions, 1994, 22, 58S-58S.	1.6	2

108 Fast Protein Liquid Chromatography (FPLC) Methods. , 1996, 59, 269-276.

2

#	Article	IF	CITATIONS
109	A modification of the hanging drop method of protein crystallisation suitable for an undergraduate class practical. Biochemical Education, 1998, 26, 173-175.	0.1	2
110	Design of Emulsification Peptides. Advances in Food and Nutrition Research, 1998, 42, 93-129.	1.5	2
111	Identification of an elongation factor 1BÎ ³ protein with glutathione transferase activity in both yeast and mycelial morphologies from human pathogenic Blastoschizomyces capitatus. Folia Microbiologica, 2014, 59, 107-113.	1.1	2
112	Gluthathione S-transferases AA and B possess a common antigenic determinant. Biochemical Society Transactions, 1982, 10, 113-113.	1.6	1
113	Identification of a novel call wall-associated endopeptidase in <u>Lactococcus lactis</u> subspecies <u>cromoris</u> SK11. Biochemical Society Transactions, 1994, 22, 38S-38S.	1.6	1
114	Cysteine plays a role in catalysis in glutathione S-transferase 1–1. Biochemical Society Transactions, 1995, 23, 388S-388S.	1.6	1
115	Redox Proteomics – A Route to the Identifi cation of Damaged Proteins. NATO Science for Peace and Security Series C: Environmental Security, 2007, , 295-308.	0.1	1
116	Purification of Glutathione S-Transferases from Yarrowia lipolytica. Biochemical Society Transactions, 1995, 23, 374S-374S.	1.6	0
117	Protein thiols as novel biomarkers in ecotoxicology: A case study of oxidative stress in Mytilus edulis sampled near a former industrial site in Cork Harbour, Ireland. Journal of Integrated OMICS, 2012, 2, .	0.5	0
118	Timeâ€dependent muscleâ€specific protein oxidation in a mouse model of chronic hypoxia. FASEB Journal, 2013, 27, 719.2.	0.2	0
119	Effects of Gold Nanoparticles on the Mediterranean Clams Ruditapes decussatus: Chemical and Biochemical Investigations. Advances in Science, Technology and Innovation, 2018, , 577-580.	0.2	0