Peter Clauwaert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7391034/publications.pdf Version: 2024-02-01

DETED CLAUNAEDT

#	Article	IF	CITATIONS
1	Electrochemical and phylogenetic comparisons of oxygen-reducing electroautotrophic communities. Biosensors and Bioelectronics, 2021, 171, 112700.	10.1	2
2	An Appraisal of Urine Derivatives Integrated in the Nitrogen and Phosphorus Inputs of a Lettuce Soilless Cultivation System. Sustainability, 2021, 13, 4218.	3.2	15
3	Root-Associated Bacterial Community Shifts in Hydroponic Lettuce Cultured with Urine-Derived Fertilizer. Microorganisms, 2021, 9, 1326.	3.6	8
4	Electrochemical In Situ pH Control Enables Chemical-Free Full Urine Nitrification with Concomitant Nitrate Extraction. Environmental Science & Technology, 2021, 55, 8287-8298.	10.0	9
5	Electrochemical tap water softening: A zero chemical input approach. Water Research, 2020, 169, 115263.	11.3	37
6	Assessment of carbon recovery from solid organic wastes by supercritical water oxidation for a regenerative life support system. Environmental Science and Pollution Research, 2020, 27, 8260-8270.	5.3	5
7	Bio-electrochemical COD removal for energy-efficient, maximum and robust nitrogen recovery from urine through membrane aerated nitrification. Water Research, 2020, 185, 116223.	11.3	54
8	Microbial Protein out of Thin Air: Fixation of Nitrogen Gas by an Autotrophic Hydrogen-Oxidizing Bacterial Enrichment. Environmental Science & Technology, 2020, 54, 3609-3617.	10.0	35
9	Electrochemically Induced Precipitation Enables Fresh Urine Stabilization and Facilitates Source Separation. Environmental Science & amp; Technology, 2020, 54, 3618-3627.	10.0	28
10	Reactivation of Microbial Strains and Synthetic Communities After a Spaceflight to the International Space Station: Corroborating the Feasibility of Essential Conversions in the MELiSSA Loop. Astrobiology, 2019, 19, 1167-1176.	3.0	9
11	Media Optimization, Strain Compatibility, and Low-Shear Modeled Microgravity Exposure of Synthetic Microbial Communities for Urine Nitrification in Regenerative Life-Support Systems. Astrobiology, 2019, 19, 1353-1362.	3.0	9
12	Urine nitrification with a synthetic microbial community. Systematic and Applied Microbiology, 2019, 42, 126021.	2.8	12
13	Oxygen-reducing microbial cathodes monitoring toxic shocks in tap water. Biosensors and Bioelectronics, 2019, 132, 115-121.	10.1	53
14	Metabolic and Proteomic Responses to Salinity in Synthetic Nitrifying Communities of Nitrosomonas spp. and Nitrobacter spp Frontiers in Microbiology, 2018, 9, 2914.	3.5	14
15	Nitrogen cycle microorganisms can be reactivated after Space exposure. Scientific Reports, 2018, 8, 13783.	3.3	16
16	Refinery and concentration of nutrients from urine with electrodialysis enabled by upstream precipitation and nitrification. Water Research, 2018, 144, 76-86.	11.3	51
17	Sub- and supercritical water oxidation of anaerobic fermentation sludge for carbon and nitrogen recovery in a regenerative life support system. Waste Management, 2018, 77, 268-275.	7.4	16
18	Sanitation of blackwater via sequential wetland and electrochemical treatment. Npj Clean Water, 2018, 1, .	8.0	24

PETER CLAUWAERT

#	Article	IF	CITATIONS
19	Nitrogen cycling in Bioregenerative Life Support Systems: Challenges for waste refinery and food production processes. Progress in Aerospace Sciences, 2017, 91, 87-98.	12.1	65
20	Ureolytic Activity and Its Regulation in <i>Vibrio campbellii</i> and <i>Vibrio harveyi</i> in Relation to Nitrogen Recovery from Human Urine. Environmental Science & Technology, 2017, 51, 13335-13343.	10.0	8
21	Used water and nutrients: Recovery perspectives in a â€~panta rhei' context. Bioresource Technology, 2016, 215, 199-208.	9.6	79
22	Nitrification and microalgae cultivation for two-stage biological nutrient valorization from source separated urine. Bioresource Technology, 2016, 211, 41-50.	9.6	52
23	Strategies to mitigate N2O emissions from biological nitrogen removal systems. Current Opinion in Biotechnology, 2012, 23, 474-482.	6.6	133
24	Biocathodic Nitrous Oxide Removal in Bioelectrochemical Systems. Environmental Science & Technology, 2011, 45, 10557-10566.	10.0	54
25	Dehalogenation of environmental pollutants in microbial electrolysis cells with biogenic palladium nanoparticles. Biotechnology Letters, 2011, 33, 89-95.	2.2	39
26	Bacterial community structure corresponds to performance during cathodic nitrate reduction. ISME Journal, 2010, 4, 1443-1455.	9.8	137
27	Bioelectrochemical Perchlorate Reduction in a Microbial Fuel Cell. Environmental Science & Technology, 2010, 44, 4685-4691.	10.0	137
28	Enhanced nitrogen removal in bio-electrochemical systems by pH control. Biotechnology Letters, 2009, 31, 1537-1543.	2.2	87
29	Methanogenesis in membraneless microbial electrolysis cells. Applied Microbiology and Biotechnology, 2009, 82, 829-836.	3.6	265
30	Litre-scale microbial fuel cells operated in a complete loop. Applied Microbiology and Biotechnology, 2009, 83, 241-247.	3.6	65
31	Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. Applied Microbiology and Biotechnology, 2008, 77, 1119-1129.	3.6	272
32	Minimizing losses in bio-electrochemical systems: the road to applications. Applied Microbiology and Biotechnology, 2008, 79, 901-913.	3.6	382
33	Energy recovery from energy rich vegetable products with microbial fuel cells. Biotechnology Letters, 2008, 30, 1947-1951.	2.2	40
34	Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells. ISME Journal, 2008, 2, 519-527.	9.8	268
35	High shear enrichment improves the performance of the anodophilic microbial consortium in a microbial fuel cell. Microbial Biotechnology, 2008, 1, 487-496.	4.2	128
36	Adapting a denitrifying biocathode for perchlorate reduction. Water Science and Technology, 2008, 58, 1941-1946.	2.5	44

3

Peter Clauwaert

#	Article	IF	CITATIONS
37	Open Air Biocathode Enables Effective Electricity Generation with Microbial Fuel Cells. Environmental Science & Technology, 2007, 41, 7564-7569.	10.0	359
38	Biological Denitrification in Microbial Fuel Cells. Environmental Science & Technology, 2007, 41, 3354-3360.	10.0	739
39	Microbial Fuel Cells for Sulfide Removalâ€. Environmental Science & Technology, 2006, 40, 5218-5224.	10.0	366
40	Tubular Microbial Fuel Cells for Efficient Electricity Generation. Environmental Science & Technology, 2005, 39, 8077-8082.	10.0	597
41	Microbial Fuel Cells as an Engineered Ecosystem. , 0, , 307-320.		7