Véronique Rouchon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7390905/publications.pdf

Version: 2024-02-01

933447 940533 22 275 10 16 citations g-index h-index papers 23 23 23 273 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Room-Temperature Study of Iron Gall Ink Impregnated Paper Degradation under Various Oxygen and Humidity Conditions: Time-Dependent Monitoring by Viscosity and X-ray Absorption Near-Edge Spectrometry Measurements. Analytical Chemistry, 2011, 83, 2589-2597.	6.5	49
2	Raman and FTIR spectroscopy applied to the conservation report of paleontological collections: identification of Raman and FTIR signatures of several iron sulfate species such as ferrinatrite and sideronatrite. Journal of Raman Spectroscopy, 2012, 43, 1265-1274.	2.5	34
3	The Water Sensitivity of Iron Gall Ink and its Risk Assessment. Studies in Conservation, 2009, 54, 236-254.	1.1	22
4	Determination of the Fe(II)/Fe(III) ratio in iron gall inks by potentiometry: A preliminary study. Journal of Electroanalytical Chemistry, 2010, 650, 16-23.	3.8	22
5	FTIR techniques applied to the detection of gelatine in paper artifacts: from macroscopic to microscopic approach. Applied Physics A: Materials Science and Processing, 2010, 100, 663-669.	2.3	21
6	Combining XANES, ICP-AES, and SEM/EDS for the study of phytate chelating treatments used on iron gall ink damaged manuscripts. Journal of Analytical Atomic Spectrometry, 2011, 26, 2434.	3.0	19
7	Application of Arrhenius law to DP and zero-span tensile strength measurements taken on iron gall ink impregnated papers: relevance of artificial ageing protocols. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	15
8	Investigating the DMPO-formate spin trapping method for the study of paper iron gall ink corrosion. New Journal of Chemistry, 2016, 40, 9098-9110.	2.8	14
9	Alteration of fossil-bearing shale (Autun, France; Permian), part II: Monitoring artificial and natural ageing by combined use of S and Ca K-edge XANES analysis, Rock-Eval pyrolysis and FTIR analysis. Annales De Paleontologie, 2015, 101, 225-239.	0.5	13
10	The use of halide charged interleaves for treatment of iron gall ink damaged papers. Polymer Degradation and Stability, 2013, 98, 1339-1347.	5. 8	10
11	Paper sizing with gelatine: from the macro- to the nano-scale. Cellulose, 2021, 28, 2419-2432.	4.9	10
12	Scanning Electrochemical Microscopy for the Electroless Deposition of Gold on Natural Pyrite: Effect of Ferric Ions. ChemElectroChem, 2019, 6, 779-786.	3.4	8
13	Accelerated ageing of shales of palaeontological interest: Impact of temperature conditions. Annales De Paleontologie, 2014, 100, 137-149.	0.5	6
14	Alteration of fossil-bearing shale (Autun Basin, France; Permian), part I: Characterizing iron speciation and its vulnerability to weathering by combined use of MA¶ssbauer spectroscopy, X-ray diffraction, porosimetry and permeability measurements. Annales De Paleontologie, 2015, 101, 75-85.	0.5	6
15	Behavior of cellobiose in iron-containing solutions: towards a better understanding of the dominant mechanism of degradation of cellulosic paper by iron gall inks. Cellulose, 2017, 24, 5101-5115.	4.9	6
16	Gypsum growth induced by pyrite oxidation jeopardises the conservation of fossil specimens: an example from the Xiaheyan entomofauna (Late Carboniferous, China). Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 507, 15-29.	2.3	5
17	The use of XRF imaging for the chemical discrimination of ironâ€gall ink inscriptions: A case study in Stradivari's workshop. X-Ray Spectrometry, 2021, 50, 244-252.	1.4	5
18	Neutron imaging investigation of fossil woods: non-destructive characterization of microstructure and detection of in situ changes as occurring in museum cabinets. Fossil Record, 2017, 20, 95-103.	1.4	4

#	Article	IF	CITATIONS
19	Alterations of fossil-bearing shale (Autun, France; Permian), part III: Framboidal pyrite and sulfur as the main cause of efflorescence. Annales De Paleontologie, 2016, 102, 31-40.	0.5	3
20	Beneficial effect of gelatin on iron gall ink corrosion. Heritage Science, 2021, 9, .	2.3	3
21	Ingres' Drawings: Retrospective Conservation Practices. Journal of Paper Conservation, 2018, 19, 88-98.	0.1	O
22	Study of the influence of water and oxygen on the morphology and chemistry of pyritized lignite: Implications for the development of a preventive drying protocol. Journal of Cultural Heritage, 2020, 42, 117-130.	3.3	0