
Barbara Skerlavaj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7390253/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Membrane perturbation, altered morphology and killing of Staphylococcus epidermidis upon contact with a cytocompatible peptide-based antibacterial surface. Colloids and Surfaces B: Biointerfaces, 2021, 203, 111745.	2.5	5
2	Covalent grafting of titanium with a cathelicidin peptide produces an osteoblast compatible surface with antistaphylococcal activity. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110586.	2.5	20
3	A Rapid Fluorescence-Based Microplate Assay to Investigate the Interaction of Membrane Active Antimicrobial Peptides with Whole Gram-Positive Bacteria. Antibiotics, 2020, 9, 92.	1.5	28
4	Evaluation of free or anchored antimicrobial peptides as candidates for the prevention of orthopaedic deviceâ€related infections. Journal of Peptide Science, 2017, 23, 777-789.	0.8	12
5	Antimicrobial and host cell-directed activities of Gly/Ser-rich peptides from salmonid cathelicidins. Fish and Shellfish Immunology, 2016, 59, 456-468.	1.6	22
6	Antifungal activity of cathelicidin peptides against planktonic and biofilm cultures of Candida species isolated from vaginal infections. Peptides, 2015, 71, 211-221.	1.2	47
7	Modulation of cytokine gene expression by cathelicidin BMAP-28 in LPS-stimulated and -unstimulated macrophages. Immunobiology, 2012, 217, 962-971.	0.8	15
8	Comparative activity and mechanism of action of three types of bovine antimicrobial peptides against pathogenic <i>Prototheca</i> spp Journal of Peptide Science, 2012, 18, 105-113.	0.8	23
9	Role of Cathelicidin Peptides in Bovine Host Defense and Healing. Probiotics and Antimicrobial Proteins, 2010, 2, 12-20.	1.9	13
10	Broad-Spectrum Activity against Bacterial Mastitis Pathogens and Activation of Mammary Epithelial Cells Support a Protective Role of Neutrophil Cathelicidins in Bovine Mastitis. Infection and Immunity, 2010, 78, 1781-1788.	1.0	73
11	Structure dependence of biological activities for primate cathelicidins. Journal of Peptide Science, 2009, 15, 576-582.	0.8	20
12	BMAP-28 improves the efficacy of vancomycin in rat models of gram-positive cocci ureteral stent infection. Peptides, 2008, 29, 1118-1123.	1.2	28
13	EFFICACY OF LL-37 AND GRANULOCYTE COLONY-STIMULATING FACTOR IN A NEUTROPENIC MURINE SEPSIS DUE TO PSEUDOMONAS AERUGINOSA. Shock, 2008, 30, 443-448.	1.0	23
14	The Human Cathelicidin LL-37 Modulates the Activities of the P2X7 Receptor in a Structure-dependent Manner. Journal of Biological Chemistry, 2008, 283, 30471-30481.	1.6	121
15	Pre-treatment of central venous catheters with the cathelicidin BMAP-28 enhances the efficacy of antistaphylococcal agents in the treatment of experimental catheter-related infection. Peptides, 2006, 27, 2104-2110.	1.2	49
16	Effects of the antimicrobial peptide BMAP-27 in a mouse model of obstructive jaundice stimulated by lipopolysaccharide. Peptides, 2006, 27, 2592-2599.	1.2	8
17	RNAIII-INHIBITING PEPTIDE IN COMBINATION WITH THE CATHELICIDIN BMAP-28 REDUCES LETHALITY IN MOUSE MODELS OF STAPHYLOCOCCAL SEPSIS. Shock, 2006, 26, 296-301.	1.0	10
18	LL-37 Protects Rats against Lethal Sepsis Caused by Gram-Negative Bacteria. Antimicrobial Agents and Chemotherapy, 2006, 50, 1672-1679.	1.4	136

BARBARA SKERLAVAJ

#	Article	IF	CITATIONS
19	Mechanistic and Functional Studies of the Interaction of a Proline-rich Antimicrobial Peptide with Mammalian Cells. Journal of Biological Chemistry, 2006, 281, 383-391.	1.6	50
20	Cathelicidin Peptide Sheep Myeloid Antimicrobial Peptide-29 Prevents Endotoxin-induced Mortality in Rat Models of Septic Shock. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 187-194.	2.5	72
21	Antimicrobial activity of Bac7 fragments against drug-resistant clinical isolates. Peptides, 2004, 25, 2055-2061.	1.2	86
22	The antimicrobial peptide BMAP-28 reduces lethality in mouse models of staphylococcal sepsis*. Critical Care Medicine, 2004, 32, 2485-2490.	0.4	54
23	In vitro and in vivo antimicrobial activity of two α-helical cathelicidin peptides and of their synthetic analogs. Peptides, 2003, 24, 1723-1731.	1.2	80
24	Antimicrobial activity of SMAP-29 against the Bacteroides fragilis group and clostridia. Journal of Antimicrobial Chemotherapy, 2003, 52, 375-381.	1.3	17
25	In vitro effect on Cryptosporidium parvum of short-term exposure to cathelicidin peptides. Journal of Antimicrobial Chemotherapy, 2003, 51, 843-847.	1.3	29
26	Neutralization of Endotoxin In Vitro and In Vivo by BAC7(1-35), a Proline-Rich Antibacterial Peptide. Shock, 2003, 19, 577-581.	1.0	32
27	BMAP-28, an Antibiotic Peptide of Innate Immunity, Induces Cell Death through Opening of the Mitochondrial Permeability Transition Pore. Molecular and Cellular Biology, 2002, 22, 1926-1935.	1.1	143
28	Cathelicidin Peptides as Candidates for a Novel Class of Antimicrobials. Current Pharmaceutical Design, 2002, 8, 779-793.	0.9	103
29	Structural and functional characterization of hBD-1(Ser35), a peptide deduced from a DEFB1 polymorphism. Biochemical and Biophysical Research Communications, 2002, 293, 586-592.	1.0	37
30	Production of a recombinant antimicrobial peptide in transgenic plants using a modified VMA intein expression system. FEBS Letters, 2002, 519, 141-146.	1.3	61
31	Structural and Functional Analysis of Horse Cathelicidin Peptides. Antimicrobial Agents and Chemotherapy, 2001, 45, 715-722.	1.4	42
32	Structure and Biology of Cathelicidins. , 2000, 479, 203-218.		115
33	SMAP-29: a potent antibacterial and antifungal peptide from sheep leukocytes. FEBS Letters, 1999, 463, 58-62.	1.3	188
34	Biological Characterization of Two Novel Cathelicidin-derived Peptides and Identification of Structural Requirements for Their Antimicrobial and Cell Lytic Activities. Journal of Biological Chemistry, 1996, 271, 28375-28381.	1.6	236
35	Identification and characterization of a primary antibacterial domain in CAP18, a lipopolysaccharide binding protein from rabbit leukocytes. FEBS Letters, 1994, 339, 108-112.	1.3	94
36	Proteolytic cleavage by neutrophil elastase converts inactive storage proforms to antibacterial bactenecins. FEBS Journal, 1992, 209, 589-595.	0.2	143

#	Article	IF	CITATIONS
37	Neutrophil and Eosinophil Granules as Stores of "Defense―Proteins. Blood Cell Biochemistry, 1991, , 335-368.	0.3	24
38	Inactivation of herpes simplex virus by protein components of bovine neutrophil granules. Antiviral Research, 1987, 7, 341-352.	1.9	22
39	A simple method to obtain pure granule-rich eosinophil fragments (cytosomes) from normal human blood. Journal of Immunological Methods, 1985, 85, 393-400.	0.6	6