Oliver Frank

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7390097/publications.pdf

Version: 2024-02-01

		257450	254184
58	1,947 citations	24	43
papers	citations	h-index	g-index
50	50	50	1005
59	59	59	1995
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Activation Spectra of Human Bitter Taste Receptors Stimulated with Cyclolinopeptides Corresponding to Fresh and Aged Linseed Oil. Journal of Agricultural and Food Chemistry, 2022, 70, 4382-4390.	5.2	12
2	Identification and Quantitation of Taste-Active Compounds in Dried Scallops by Combined Application of the Sensomics and a Quantitative NMR Approach. Journal of Agricultural and Food Chemistry, 2022, 70, 247-259.	5.2	7
3	Synthesis of Human Phase I and Phase II Metabolites of Hop (Humulus lupulus) Prenylated Flavonoids. Metabolites, 2022, 12, 345.	2.9	4
4	Identification and Quantitation of Reaction Products from Chlorogenic Acid, Caffeic Acid, and Their Thermal Degradation Products with Odor-Active Thiols in Coffee Beverages. Journal of Agricultural and Food Chemistry, 2022, 70, 5427-5437.	5.2	9
5	High-Throughput Flavor Analysis and Mapping of Flavor Alterations Induced by Different Genotypes of <i>Mentha</i> by Means of UHPLC-MS/MS. Journal of Agricultural and Food Chemistry, 2022, 70, 5668-5679.	5.2	1
6	Key odorant melanoidin interactions in aroma staling of coffee beverages. Food Chemistry, 2022, 392, 133291.	8.2	6
7	Steroidal Saponinsa"€New Sources to Develop Potato (<i>Solanum tuberosum</i> L.) Genotypes Resistant against Certain <i>Phytophthora infestans</i> Strains. Journal of Agricultural and Food Chemistry, 2022, 70, 7447-7459.	5.2	11
8	Identification and Quantitation of Reaction Products from Quinic Acid, Quinic Acid Lactone, and Chlorogenic Acid with Strecker Aldehydes in Roasted Coffee. Journal of Agricultural and Food Chemistry, 2021, 69, 1027-1038.	5.2	22
9	A high throughput toolbox for comprehensive flavor compound mapping in mint. Food Chemistry, 2021, 365, 130522.	8.2	4
10	Biosynthesis of α-solanine and α-chaconine in potato leaves (Solanum tuberosum L.) – A 13CO2 study. Food Chemistry, 2021, 365, 130461.	8.2	9
11	Separation of minor cannabinoids from hemp extract with trapping multiple dual mode liquid-liquid chromatography. Journal of Chromatography A, 2021, 1658, 462608.	3.7	8
12	Quantitative Proton NMR Spectroscopy for Basic Taste Recombinant Reconstitution Using the Taste Recombinant Database. Journal of Agricultural and Food Chemistry, 2021, 69, 14713-14721.	5.2	7
13	NMR-Based Studies on Odorant–Melanoidin Interactions in Coffee Beverages. Journal of Agricultural and Food Chemistry, 2021, 69, 15334-15344.	5.2	12
14	Comprehensive Analysis of the <i>Alternaria</i> Mycobolome Using Mass Spectrometry Based Metabolomics. Molecular Nutrition and Food Research, 2020, 64, e1900558.	3.3	26
15	Quantitative Determination of Thiamine-Derived Taste Enhancers in Aqueous Model Systems, Natural Deep Eutectic Solvents, and Thermally Processed Foods. Journal of Agricultural and Food Chemistry, 2020, 68, 6181-6189.	5.2	8
16	Tyrosine Induced Metabolome Alterations of <i>Penicillium roqueforti</i> and Quantitation of Secondary Key Metabolites in Blue-Mold Cheese. Journal of Agricultural and Food Chemistry, 2019, 67, 8500-8509.	5.2	5
17	Novel Taste-Enhancing 4-Amino-2-methyl-5-heteroalkypyrimidines Formed from Thiamine by Maillard-Type Reactions. Journal of Agricultural and Food Chemistry, 2019, 67, 13986-13997.	5.2	11
18	Discovery of a Thiamine-Derived Taste Enhancer in Process Flavors. Journal of Agricultural and Food Chemistry, 2019, 67, 5857-5865.	5.2	16

#	Article	IF	CITATIONS
19	Functional Metabolome Analysis of <i>Penicillium roqueforti</i> by Means of Differential Off-Line LCâ€"NMR. Journal of Agricultural and Food Chemistry, 2019, 67, 5135-5146.	5.2	11
20	Production of the potential sweetener 5-ketofructose from fructose in fed-batch cultivation with Gluconobacter oxydans. Bioresource Technology, 2018, 259, 164-172.	9.6	21
21	Decoding the Nonvolatile Sensometabolome of Orange Juice (<i>Citrus sinensis</i>). Journal of Agricultural and Food Chemistry, 2018, 66, 2354-2369.	5.2	23
22	Xanthohumol C, a minor bioactive hop compound: Production, purification strategies and antimicrobial test. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1095, 39-49.	2.3	13
23	Differential Off-line LC-NMR (DOLC-NMR) Metabolomics To Monitor Tyrosine-Induced Metabolome Alterations in <i>Saccharomyces cerevisiae</i> . Journal of Agricultural and Food Chemistry, 2017, 65, 3230-3241.	5.2	24
24	Label-free quantitative 1H NMR spectroscopy to study low-affinity ligand–protein interactions in solution: A contribution to the mechanism of polyphenol-mediated astringency. PLoS ONE, 2017, 12, e0184487.	2.5	22
25	Chemical Synthesis of Deoxynivalenol-3- \hat{l}^2 -d-[13C6]-glucoside and Application in Stable Isotope Dilution Assays. Molecules, 2016, 21, 838.	3.8	10
26	A new NMR approach for structure determination of thermally unstable biflavanones and application to phytochemicals from <i>Garcinia buchananii</i> i>Nagnetic Resonance in Chemistry, 2015, 53, 813-820.	1.9	5
27	Antioxidative Compounds from <i>Garcinia buchananii</i> Stem Bark. Journal of Natural Products, 2015, 78, 234-240.	3.0	38
28	Purification procedure for (2R,3S,2″R,3″R)-manniflavanone and its minor (2R,3S,2″S,3″S)-isomer from Garcinia buchananii stem bark. European Food Research and Technology, 2015, 240, 1075-1080.	3.3	5
29	UPLC-ESI-TOF MS-Based Metabolite Profiling of the Antioxidative Food Supplement <i>Garcinia buchananii</i> Journal of Agricultural and Food Chemistry, 2015, 63, 7169-7179.	5.2	27
30	ORA1, a Zebrafish Olfactory Receptor Ancestral to All Mammalian V1R Genes, Recognizes 4-Hydroxyphenylacetic Acid, a Putative Reproductive Pheromone. Journal of Biological Chemistry, 2014, 289, 19778-19788.	3.4	44
31	Accurate Determination of Reference Materials and Natural Isolates by Means of Quantitative H">sup>H"	5.2	129
32	Quantitation of Sweet Steviol Glycosides by Means of a HILIC-MS/MS-SIDA Approach. Journal of Agricultural and Food Chemistry, 2013, 61, 11312-11320.	5.2	29
33	Development of analytical methods for the determination of tenuazonic acid analogues in food commodities. Journal of Chromatography A, 2013, 1289, 27-36.	3.7	24
34	Development and Application of a Stable Isotope Dilution Analysis for the Quantitation of Advanced Glycation End Products of Creatinine in Biofluids of Type 2 Diabetic Patients and Healthy Volunteers. Analytical Chemistry, 2013, 85, 2961-2969.	6.5	5
35	Structural and Sensory Characterization of Key Pungent and Tingling Compounds from Black Pepper (<i>Piper nigrum</i> L.). Journal of Agricultural and Food Chemistry, 2012, 60, 2884-2895.	5.2	54
36	Development of stable isotope dilution assays for ochratoxin A in blood samples. Analytical Biochemistry, 2011, 419, 88-94.	2.4	26

3

#	Article	lF	Citations
37	Identification of (furan-2-yl)methylated benzene diols and triols as a novel class of bitter compounds in roasted coffee. Food Chemistry, 2011, 126, 441-449.	8.2	37
38	Measurement of the Intracellular pH in Human Stomach Cells: A Novel Approach To Evaluate the Gastric Acid Secretory Potential of Coffee Beverages. Journal of Agricultural and Food Chemistry, 2010, 58, 1976-1985.	5.2	34
39	Quantitative Studies on the Influence of the Bean Roasting Parameters and Hot Water Percolation on the Concentrations of Bitter Compounds in Coffee Brew. Journal of Agricultural and Food Chemistry, 2010, 58, 3720-3728.	5.2	70
40	Structures of Storageâ€Induced Transformation Products of the Beer's Bitter Principles, Revealed by Sophisticated NMR Spectroscopic and LC–MS Techniques. Chemistry - A European Journal, 2009, 15, 13047-13058.	3.3	72
41	Structure Determination of 3- <i>O</i> -Caffeoyl- <i>epi</i> -Quinide, an Orphan Bitter Lactone in Roasted Coffee. Journal of Agricultural and Food Chemistry, 2008, 56, 9581-9585.	5.2	47
42	Saccharin: Artificial Sweetener, Bitter Tastant, and Sweet Taste Inhibitor. ACS Symposium Series, 2008, , 230-240.	0.5	6
43	Identification of Bitter Off-Taste Compounds in the Stored Cold Pressed Linseed Oil. Journal of Agricultural and Food Chemistry, 2007, 55, 7864-7868.	5.2	62
44	Structure Determination and Sensory Analysis of Bitter-Tasting 4-Vinylcatechol Oligomers and Their Identification in Roasted Coffee by Means of LC-MS/MS. Journal of Agricultural and Food Chemistry, 2007, 55, 1945-1954.	5.2	117
45	Bioresponse-guided decomposition of roast coffee beverage and identification of key bitter taste compounds. European Food Research and Technology, 2006, 222, 492-508.	3.3	123
46	Structural and Functional Characterization of a Multimodal Taste Enhancer in Beef Bouillon. ACS Symposium Series, 2005, , 173-188.	0.5	1
47	Bitter Taste Receptors for Saccharin and Acesulfame K. Journal of Neuroscience, 2004, 24, 10260-10265.	3.6	315
48	Systematic studies of structure and physiological activity of alapyridaine. A novel food-born taste enhancer. Molecular Nutrition and Food Research, 2004, 48, 270-281.	3.3	17
49	Maillard Reaction Products Modulating the Growth of Human Tumor Cells in Vitro. Chemical Research in Toxicology, 2003, 16, 48-55.	3.3	49
50	Sensory Activity, Chemical Structure, and Synthesis of Maillard Generated Bitter-Tasting 1-Oxo-2,3-dihydro-1H-indolizinium-6-olates. Journal of Agricultural and Food Chemistry, 2003, 51, 2693-2699.	5.2	33
51	Activity-Guided Identification of a Chemopreventive Compound in Coffee Beverage Using in Vitro and in Vivo Techniques. Journal of Agricultural and Food Chemistry, 2003, 51, 6861-6869.	5.2	130
52	RAGE-mediated MAPK activation by food-derived AGE and non-AGE products. Biochemical and Biophysical Research Communications, 2003, 300, 311-315.	2.1	69
53	The Taste Activity Concept: A Powerful Tool to Trace the Key Tastants in Foods. ACS Symposium Series, 2003, , 104-124.	0.5	2
54	Reinvestigation of the Chemical Structure of Bitter-Tasting Quinizolate and Homoquinizolate and Studies on Their Maillard-Type Formation Pathways Using Suitable 13C-Labeling Experiments. Journal of Agricultural and Food Chemistry, 2002, 50, 6027-6036.	5.2	25

#	Article	IF	CITATION
55	The "colorful―chemistry of nonenzymatic browning. International Congress Series, 2002, 1245, 37-41.	0.2	5
56	Characterisation of novel 1 H,4 H-quinolizinium-7-olate chromophores by application of colour dilution analysis and high-speed countercurrent chromatography on thermally browned pentose/L-alanine solutions. European Food Research and Technology, 2001, 213, 1-7.	3.3	7
57	On the Influence of the Carbohydrate Moiety on Chromophore Formation during Food-RelatedMaillard Reactions of Pentoses, Hexoses, and Disaccharides. Helvetica Chimica Acta, 2000, 83, 3246-3261.	1.6	13
58	Characterization of Key Chromophores Formed by Nonenzymatic Browning of Hexoses and Alanine by Using the Color Activity Concept. Journal of Agricultural and Food Chemistry, 2000, 48, 6303-6311.	5.2	25