List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7389801/publications.pdf Version: 2024-02-01

HUA-CULVANC

#	Article	IF	CITATIONS
1	Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 2008, 453, 638-641.	27.8	3,753
2	Homogeneously dispersed multimetal oxygen-evolving catalysts. Science, 2016, 352, 333-337.	12.6	1,948
3	Solvothermal Synthesis and Photoreactivity of Anatase TiO ₂ Nanosheets with Dominant {001} Facets. Journal of the American Chemical Society, 2009, 131, 4078-4083.	13.7	1,237
4	Titania-based photocatalysts—crystal growth, doping and heterostructuring. Journal of Materials Chemistry, 2010, 20, 831-843.	6.7	1,028
5	Preparation of Hollow Anatase TiO2Nanospheres via Ostwald Ripening. Journal of Physical Chemistry B, 2004, 108, 3492-3495.	2.6	940
6	Titanium Dioxide Crystals with Tailored Facets. Chemical Reviews, 2014, 114, 9559-9612.	47.7	922
7	Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nature Communications, 2016, 7, 10667.	12.8	577
8	Visible Light Responsive Nitrogen Doped Anatase TiO ₂ Sheets with Dominant {001} Facets Derived from TiN. Journal of the American Chemical Society, 2009, 131, 12868-12869.	13.7	570
9	Functionalization of perovskite thin films with moisture-tolerant molecules. Nature Energy, 2016, 1, .	39.5	439
10	Self-Construction of Hollow SnO2 Octahedra Based on Two-Dimensional Aggregation of Nanocrystallites. Angewandte Chemie - International Edition, 2004, 43, 5930-5933.	13.8	429
11	Recent progress in biomedical applications of titanium dioxide. Physical Chemistry Chemical Physics, 2013, 15, 4844.	2.8	417
12	Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity. Chemical Communications, 2010, 46, 755-757.	4.1	403
13	Cobalt Covalent Doping in MoS ₂ to Induce Bifunctionality of Overall Water Splitting. Advanced Materials, 2018, 30, e1801450.	21.0	402
14	Enhanced Photoactivity of Oxygen-Deficient Anatase TiO ₂ Sheets with Dominant {001} Facets. Journal of Physical Chemistry C, 2009, 113, 21784-21788.	3.1	376
15	Rational screening low-cost counter electrodes for dye-sensitized solar cells. Nature Communications, 2013, 4, 1583.	12.8	365
16	Top-Down Fabrication of α-Fe ₂ O ₃ Single-Crystal Nanodiscs and Microparticles with Tunable Porosity for Largely Improved Lithium Storage Properties. Journal of the American Chemical Society, 2010, 132, 13162-13164.	13.7	359
17	Defect-Rich Ultrathin Cobalt–Iron Layered Double Hydroxide for Electrochemical Overall Water Splitting. ACS Applied Materials & Interfaces, 2016, 8, 34474-34481.	8.0	345
18	Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH ₃ NH ₃ Pbl ₃ . Physical Chemistry Chemical Physics, 2014, 16, 1424-1429.	2.8	306

#	Article	IF	CITATIONS
19	Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water. Nature Communications, 2015, 6, 8064.	12.8	270
20	Synthesis of high-reactive facets dominated anatase TiO2. Journal of Materials Chemistry, 2011, 21, 7052.	6.7	241
21	Molybdenum carbide stabilized on graphene with high electrocatalytic activity for hydrogen evolution reaction. Chemical Communications, 2014, 50, 13135-13137.	4.1	235
22	Fundamental Understanding of Photocurrent Hysteresis in Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1803017.	19.5	224
23	On the Unusual Properties of Anatase TiO ₂ Exposed by Highly Reactive Facets. Journal of Physical Chemistry Letters, 2011, 2, 725-734.	4.6	223
24	Higher charge/discharge rates of lithium-ions across engineered TiO2 surfaces leads to enhanced battery performance. Chemical Communications, 2010, 46, 6129.	4.1	216
25	A self-sponsored doping approach for controllable synthesis of S and N co-doped trimodal-porous structured graphitic carbon electrocatalysts. Energy and Environmental Science, 2014, 7, 3720-3726.	30.8	198
26	Unidirectional suppression of hydrogen oxidation on oxidized platinum clusters. Nature Communications, 2013, 4, 2500.	12.8	197
27	Ultra-thin anatase TiO ₂ nanosheets dominated with {001} facets: thickness-controlled synthesis, growth mechanism and water-splitting properties. CrystEngComm, 2011, 13, 1378-1383.	2.6	189
28	Creation of Intestine-like Interior Space for Metal-Oxide Nanostructures with a Quasi-Reverse Emulsion. Angewandte Chemie - International Edition, 2004, 43, 5206-5209.	13.8	180
29	Ultrathin Transition Metal Dichalcogenide/3d Metal Hydroxide Hybridized Nanosheets to Enhance Hydrogen Evolution Activity. Advanced Materials, 2018, 30, e1801171.	21.0	180
30	Fabrication and Sizeâ€5elective Bioseparation of Magnetic Silica Nanospheres with Highly Ordered Periodic Mesostructure. Advanced Functional Materials, 2008, 18, 3203-3212.	14.9	179
31	Hydrogen Spillover-Bridged Volmer/Tafel Processes Enabling Ampere-Level Current Density Alkaline Hydrogen Evolution Reaction under Low Overpotential. Journal of the American Chemical Society, 2022, 144, 6028-6039.	13.7	179
32	Solvothermally controllable synthesis of anatase TiO2 nanocrystals with dominant {001} facets and enhanced photocatalytic activity. CrystEngComm, 2010, 12, 2219.	2.6	178
33	Stable Isolated Metal Atoms as Active Sites for Photocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2014, 20, 2138-2144.	3.3	173
34	Ni ₂ P(O)/Fe ₂ P(O) Interface Can Boost Oxygen Evolution Electrocatalysis. ACS Energy Letters, 2017, 2, 2257-2263.	17.4	173
35	Synthetic Architectures of TiO2/H2Ti5O11·H2O, ZnO/H2Ti5O11·H2O, ZnO/TiO2/H2Ti5O11·H2O, and ZnO/TiO2Nanocomposites. Journal of the American Chemical Society, 2005, 127, 270-278.	13.7	166
36	Ultrathin nanosheets constructed CoMoO ₄ porous flowers with high activity for electrocatalytic oxygen evolution. Chemical Communications, 2015, 51, 14361-14364.	4.1	166

#	Article	IF	CITATIONS
37	Tuning Metal Catalyst with Metal–C ₃ N ₄ Interaction for Efficient CO ₂ Electroreduction. ACS Catalysis, 2018, 8, 11035-11041.	11.2	161
38	Inorganic Photocatalysts for Overall Water Splitting. Chemistry - an Asian Journal, 2012, 7, 642-657.	3.3	160
39	Anatase TiO ₂ Crystals with Exposed Highâ€Index Facets. Angewandte Chemie - International Edition, 2011, 50, 3764-3768.	13.8	159
40	Hydrothermal Stability of {001} Faceted Anatase TiO ₂ . Chemistry of Materials, 2011, 23, 3486-3494.	6.7	157
41	Synthesis of micro-sized titanium dioxide nanosheets wholly exposed with high-energy {001} and {100} facets. Chemical Communications, 2011, 47, 4400.	4.1	153
42	Facet-Dependent Catalytic Activity of Platinum Nanocrystals for Triiodide Reduction in Dye-Sensitized Solar Cells. Scientific Reports, 2013, 3, 1836.	3.3	146
43	Hierarchical Structures of Singleâ€Crystalline Anatase TiO ₂ Nanosheets Dominated by {001} Facets. Chemistry - A European Journal, 2011, 17, 1423-1427.	3.3	143
44	Formation Mechanism of Freestanding CH ₃ NH ₃ PbI ₃ Functional Crystals: In Situ Transformation vs Dissolution–Crystallization. Chemistry of Materials, 2014, 26, 6705-6710.	6.7	143
45	Hydrothermal Transformation of Dried Grass into Graphitic Carbonâ€Based High Performance Electrocatalyst for Oxygen Reduction Reaction. Small, 2014, 10, 3371-3378.	10.0	135
46	Fabrication of uniform anatase TiO2 particles exposed by {001} facets. Chemical Communications, 2010, 46, 6608.	4.1	134
47	Mo ⁶⁺ activated multimetal oxygen-evolving catalysts. Chemical Science, 2017, 8, 3484-3488.	7.4	129
48	Electrochemical etching of α-cobalt hydroxide for improvement of oxygen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 9578-9584.	10.3	125
49	Low-cost SnSx counter electrodes for dye-sensitized solar cells. Chemical Communications, 2013, 49, 5793.	4.1	115
50	Surface hydrogen bonding can enhance photocatalytic H2 evolution efficiency. Journal of Materials Chemistry A, 2013, 1, 14089.	10.3	113
51	From titanium oxydifluoride (TiOF2) to titania (TiO2): phase transition and non-metal doping with enhanced photocatalytic hydrogen (H2) evolution properties. Chemical Communications, 2011, 47, 6138.	4.1	110
52	Rheological Behavior of Titanium Dioxide Suspensions. Journal of Colloid and Interface Science, 2001, 236, 96-103.	9.4	107
53	Thermal-Induced Volmer–Weber Growth Behavior for Planar Heterojunction Perovskites Solar Cells. Chemistry of Materials, 2015, 27, 5116-5121.	6.7	107
54	Enhancing alkaline hydrogen evolution reaction activity through Ni–Mn ₃ O ₄ nanocomposites. Chemical Communications, 2016, 52, 10566-10569.	4.1	106

#	Article	IF	CITATIONS
55	Surface chelation of cesium halide perovskite by dithiocarbamate for efficient and stable solar cells. Nature Communications, 2020, 11, 4237.	12.8	106
56	Facile Fabrication of Large-Aspect-Ratio g-C ₃ N ₄ Nanosheets for Enhanced Photocatalytic Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2017, 5, 2039-2043.	6.7	104
57	Nitrogen-Stabilized Low-Valent Ni Motifs for Efficient CO ₂ Electrocatalysis. ACS Catalysis, 2020, 10, 1086-1093.	11.2	101
58	One-step solid phase synthesis of a highly efficient and robust cobalt pentlandite electrocatalyst for the oxygen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 18314-18321.	10.3	97
59	Black Tungsten Nitride as a Metallic Photocatalyst for Overall Water Splitting Operable at up to 765â€nm. Angewandte Chemie - International Edition, 2017, 56, 7430-7434.	13.8	97
60	Yolk@shell anatase TiO2 hierarchical microspheres with exposed {001} facets for high-performance dye sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 22082.	6.7	96
61	Active sites on hydrogen evolution photocatalyst. Journal of Materials Chemistry A, 2013, 1, 15258.	10.3	96
62	Mn ₃ O ₄ nano-octahedrons on Ni foam as an efficient three-dimensional oxygen evolution electrocatalyst. Journal of Materials Chemistry A, 2015, 3, 14101-14104.	10.3	95
63	A Gradient Heterostructure Based on Tolerance Factor in Highâ€Performance Perovskite Solar Cells with 0.84 Fill Factor. Advanced Materials, 2019, 31, e1804217.	21.0	95
64	Titania single crystals with a curved surface. Nature Communications, 2014, 5, 5355.	12.8	94
65	Hydrogen Incorporation and Storage in Well-Defined Nanocrystals of Anatase Titanium Dioxide. Journal of Physical Chemistry C, 2011, 115, 25590-25594.	3.1	93
66	1D/1D Hierarchical Nickel Sulfide/Phosphide Nanostructures for Electrocatalytic Water Oxidation. ACS Energy Letters, 2018, 3, 2021-2029.	17.4	93
67	Surface Electronic Modification of Perovskite Thin Film with Waterâ€Resistant Electron Delocalized Molecules for Stable and Efficient Photovoltaics. Advanced Energy Materials, 2018, 8, 1703143.	19.5	91
68	Strongly Coupled CoCr ₂ O ₄ /Carbon Nanosheets as High Performance Electrocatalysts for Oxygen Evolution Reaction. Small, 2016, 12, 2866-2871.	10.0	90
69	One-step fabrication of porous oxygen-doped g-C ₃ N ₄ with feeble nitrogen vacancies for enhanced photocatalytic performance. Chemical Communications, 2016, 52, 14408-14411.	4.1	88
70	Remarkably enhanced water splitting activity of nickel foam due to simple immersion in a ferric nitrate solution. Nano Research, 2018, 11, 3959-3971.	10.4	88
71	Low-temperature processed In2S3 electron transport layer for efficient hybrid perovskite solar cells. Nano Energy, 2017, 36, 102-109.	16.0	87
72	Hydrogen-treated commercial WO3 as an efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells. Chemical Communications, 2013, 49, 5945.	4.1	83

#	Article	IF	CITATIONS
73	The size and valence state effect of Pt on photocatalytic H2 evolution over platinized TiO2 photocatalyst. International Journal of Hydrogen Energy, 2014, 39, 1237-1242.	7.1	82
74	A Bandâ€Edge Potential Gradient Heterostructure to Enhance Electron Extraction Efficiency of the Electron Transport Layer in Highâ€Performance Perovskite Solar Cells. Advanced Functional Materials, 2017, 27, 1700878.	14.9	81
75	Perovskite Microcrystals with Intercalated Monolayer MoS2 Nanosheets as Advanced Photocatalyst for Solar-Powered Hydrogen Generation. Matter, 2020, 3, 935-949.	10.0	81
76	Highly Ethyleneâ€6elective Electrocatalytic CO ₂ Reduction Enabled by Isolated Cuâ^'S Motifs in Metal–Organic Framework Based Precatalysts. Angewandte Chemie - International Edition, 2022, 61, .	13.8	81
77	Engineered Hematite Mesoporous Single Crystals Drive Drastic Enhancement in Solar Water Splitting. Nano Letters, 2016, 16, 427-433.	9.1	80
78	Nickel nanoparticles coated with graphene layers as efficient co-catalyst for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2017, 200, 578-584.	20.2	77
79	Isolation of single Pt atoms in a silver cluster: forming highly efficient silver-based cocatalysts for photocatalytic hydrogen evolution. Chemical Communications, 2017, 53, 9402-9405.	4.1	76
80	Determination of Iodide via Direct Fluorescence Quenching at Nitrogen-Doped Carbon Quantum Dot Fluorophores. Environmental Science and Technology Letters, 2014, 1, 87-91.	8.7	74
81	Copper-modulated bismuth nanocrystals alter the formate formation pathway to achieve highly selective CO ₂ electroreduction. Journal of Materials Chemistry A, 2018, 6, 16804-16809.	10.3	74
82	Density Functional Studies of Stoichiometric Surfaces of Orthorhombic Hybrid Perovskite CH ₃ NH ₃ PbI ₃ . Journal of Physical Chemistry C, 2015, 119, 1136-1145.	3.1	73
83	Accelerating Neutral Hydrogen Evolution with Tungsten Modulated Amorphous Metal Hydroxides. ACS Catalysis, 2018, 8, 5200-5205.	11.2	73
84	Positively charged Pt-based cocatalysts: an orientation for achieving efficient photocatalytic water splitting. Journal of Materials Chemistry A, 2020, 8, 17-26.	10.3	71
85	Highly Electrocatalytic Activity of RuO ₂ Nanocrystals for Triiodide Reduction in Dyeâ€ S ensitized Solar Cells. Small, 2014, 10, 484-492.	10.0	68
86	Activation strategies of water-splitting electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 10096-10129.	10.3	67
87	Stoichiometric Dissolution of Defective CsPbl ₂ Br Surfaces for Inorganic Solar Cells with 17.5% Efficiency. Advanced Energy Materials, 2022, 12, .	19.5	66
88	Reconstructing bimetallic carbide Mo ₆ Ni ₆ C for carbon interconnected MoNi alloys to boost oxygen evolution electrocatalysis. Materials Horizons, 2019, 6, 115-121.	12.2	62
89	A {0001} faceted single crystal NiS nanosheet electrocatalyst for dye-sensitised solar cells: sulfur-vacancy induced electrocatalytic activity. Chemical Communications, 2014, 50, 5569.	4.1	60
90	Surface-functionalized perovskite films for stable photoelectrochemical water splitting. Journal of Materials Chemistry A, 2017, 5, 910-913.	10.3	60

#	Article	IF	CITATIONS
91	Carboxyl functionalized graphite carbon nitride for remarkably enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 266, 118590.	20.2	60
92	Critical roles of co-catalysts for molecular hydrogen formation in photocatalysis. Journal of Catalysis, 2015, 330, 120-128.	6.2	59
93	Fluorineâ€Doped Porous Singleâ€Crystal Rutile TiO ₂ Nanorods for Enhancing Photoelectrochemical Water Splitting. Chemistry - A European Journal, 2014, 20, 11439-11444.	3.3	58
94	Multifunctional Inverse Opalâ€Like TiO ₂ Electron Transport Layer for Efficient Hybrid Perovskite Solar Cells. Advanced Science, 2015, 2, 1500105.	11.2	58
95	Facile fabrication of high-yield graphitic carbon nitride with a large surface area using bifunctional urea for enhanced photocatalytic performance. Applied Catalysis B: Environmental, 2017, 205, 624-630.	20.2	58
96	Control of Nucleation in Solution Growth of Anatase TiO2on Glass Substrate. Journal of Physical Chemistry B, 2003, 107, 12244-12255.	2.6	57
97	High-yield synthesis and magnetic properties of ZnFe2O4 single crystal nanocubes in aqueous solution. Journal of Alloys and Compounds, 2013, 550, 348-352.	5.5	57
98	Vaporâ€Phase Hydrothermal Transformation of HTiOF ₃ Intermediates into {001} Faceted Anatase Singleâ€Crystalline Nanosheets. Small, 2012, 8, 3664-3673.	10.0	56
99	A Solutionâ€Processed Transparent NiO Holeâ€Extraction Layer for Highâ€Performance Inverted Perovskite Solar Cells. Chemistry - A European Journal, 2018, 24, 2845-2849.	3.3	54
100	Effects of redox mediators on α-Fe2O3 exposed by {012} and {104} facets for photocatalytic water oxidation. Applied Catalysis B: Environmental, 2017, 206, 216-220.	20.2	53
101	TiO ₂ -Coated Ultrathin SnO ₂ Nanosheets Used as Photoanodes for Dye-Sensitized Solar Cells with High Efficiency. Industrial & Engineering Chemistry Research, 2012, 51, 4247-4253.	3.7	52
102	Manipulating solar absorption and electron transport properties of rutile TiO2 photocatalysts via highly n-type F-doping. Journal of Materials Chemistry A, 2014, 2, 3513.	10.3	52
103	The search for efficient electrocatalysts as counter electrode materials for dye-sensitized solar cells: mechanistic study, material screening and experimental validation. NPG Asia Materials, 2015, 7, e226-e226.	7.9	52
104	Self-supported bimodal-pore structured nitrogen-doped carbon fiber aerogel as electrocatalyst for oxygen reduction reaction. Electrochemistry Communications, 2015, 51, 6-10.	4.7	51
105	Selective methane electrosynthesis enabled by a hydrophobic carbon coated copper core–shell architecture. Energy and Environmental Science, 2022, 15, 234-243.	30.8	51
106	Operando NMR spectroscopic analysis of proton transfer in heterogeneous photocatalytic reactions. Nature Communications, 2016, 7, 11918.	12.8	49
107	CuCu ₂ OTiO ₂ Nanojunction Systems with an Unusual Electron–Hole Transportation Pathway and Enhanced Photocatalytic Properties. Chemistry - an Asian Journal, 2013, 8, 1265-1270.	3.3	47
108	An in situ vapour phase hydrothermal surface doping approach for fabrication of high performance Co ₃ O ₄ electrocatalysts with an exceptionally high S-doped active surface. Chemical Communications, 2015, 51, 5695-5697.	4.1	47

#	Article	IF	CITATIONS
109	The surface sulfur doping induced enhanced performance of cobalt catalysts in oxygen evolution reactions. Chemical Communications, 2016, 52, 9450-9453.	4.1	47
110	Hyperbranched Conjugated Polymer Dots: The Enhanced Photocatalytic Activity for Visible Light-Driven Hydrogen Production. Macromolecules, 2019, 52, 4376-4384.	4.8	47
111	On the synergistic effect of hydrohalic acids in the shape-controlled synthesis of anatase TiO ₂ single crystals. CrystEngComm, 2013, 15, 3252-3255.	2.6	45
112	Enhanced moisture stability of metal halide perovskite solar cells based on sulfur–oleylamine surface modification. Nanoscale Horizons, 2019, 4, 208-213.	8.0	45
113	Surface engineering of nickel selenide for an enhanced intrinsic overall water splitting ability. Materials Chemistry Frontiers, 2018, 2, 1725-1731.	5.9	44
114	Operando Highâ€Valence Crâ€Modified NiFe Hydroxides for Water Oxidation. Small, 2022, 18, e2200303.	10.0	44
115	Molecularly Dispersed Cobalt Phthalocyanine Mediates Selective and Durable CO ₂ Reduction in a Membrane Flow Cell. Advanced Functional Materials, 2022, 32, 2107301.	14.9	43
116	Titania polymorphs derived from crystalline titanium diboride. CrystEngComm, 2009, 11, 2677.	2.6	42
117	A low-temperature processed flower-like TiO ₂ array as an electron transport layer for high-performance perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 6521-6526.	10.3	42
118	Bimetallic Carbide as a Stable Hydrogen Evolution Catalyst in Harsh Acidic Water. ACS Energy Letters, 2018, 3, 78-84.	17.4	42
119	Enhanced CO ₂ electroreduction performance over Cl-modified metal catalysts. Journal of Materials Chemistry A, 2019, 7, 12420-12425.	10.3	42
120	Water assisted formation of highly oriented CsPbI ₂ Br perovskite films with the solar cell efficiency exceeding 16%. Journal of Materials Chemistry A, 2020, 8, 17670-17674.	10.3	40
121	Rutile TiO2 films with 100% exposed pyramid-shaped (111) surface: photoelectron transport properties under UV and visible light irradiation. Journal of Materials Chemistry A, 2013, 1, 2646.	10.3	39
122	Ca ²⁺ and Ga ³⁺ doped LaMnO ₃ perovskite as a highly efficient and stable catalyst for two-step thermochemical water splitting. Sustainable Energy and Fuels, 2017, 1, 1013-1017.	4.9	37
123	Epitaxial halide perovskite-based materials for photoelectric energy conversion. Energy and Environmental Science, 2021, 14, 127-157.	30.8	37
124	Controllable Nanocarving of Anatase TiO ₂ Single Crystals with Reactive {001} Facets. Chemistry - A European Journal, 2011, 17, 6615-6619.	3.3	36
125	A sulfur-assisted strategy to decorate MWCNTs with highly dispersed Pt nanoparticles for counter electrode in dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 1982-1986.	10.3	36
126	BrÃ,nsted base site engineering of graphitic carbon nitride for enhanced photocatalytic activity. Journal of Materials Chemistry A, 2017, 5, 19227-19236.	10.3	36

#	Article	IF	CITATIONS
127	Fabrication of Regular ZnO/TiO ₂ Heterojunctions with Enhanced Photocatalytic Properties. Chemistry - A European Journal, 2013, 19, 8393-8396.	3.3	35
128	A fluorescent quenching performance enhancing principle for carbon nanodot-sensitized aqueous solar cells. Nano Energy, 2015, 13, 124-130.	16.0	34
129	Ultrathin SnO ₂ Scaffolds for TiO ₂ â€Based Heterojunction Photoanodes in Dye‧ensitized Solar Cells: Oriented Charge Transport and Improved Light Scattering. Chemistry - A European Journal, 2013, 19, 9366-9370.	3.3	31
130	Modulating MAPbI3 perovskite solar cells by amide molecules: Crystallographic regulation and surface passivation. Journal of Energy Chemistry, 2021, 56, 179-185.	12.9	31
131	Cluster Size Effects of Platinum Oxide as Active Sites in Hydrogen Evolution Reactions. Chemistry - A European Journal, 2014, 20, 12377-12380.	3.3	30
132	A novel strategy to prepare a Pt–SnO ₂ nanocomposite as a highly efficient counter electrode for dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 17253-17257.	10.3	30
133	Quantitative analysis of the PtO structure during photocatalytic water splitting by operando XAFS. Journal of Materials Chemistry A, 2017, 5, 20631-20634.	10.3	30
134	Notable hydrogen production on LaxCa1â^'xCoO3 perovskites via two-step thermochemical water splitting. Journal of Materials Science, 2018, 53, 6796-6806.	3.7	30
135	Simple Cadmium Sulfide Compound with Stable 95 % Selectivity for Carbon Dioxide Electroreduction in Aqueous Medium. ChemSusChem, 2018, 11, 1421-1425.	6.8	30
136	Deepening the Valance Band Edges of NiO _{<i>x</i>} Contacts by Alkaline Earth Metal Doping for Efficient Perovskite Photovoltaics with High Openâ€Circuit Voltage. Solar Rrl, 2019, 3, 1900192.	5.8	30
137	A highly crystalline Nb3O7F nanostructured photoelectrode: fabrication and photosensitisation. Journal of Materials Chemistry A, 2013, 1, 6563.	10.3	29
138	A free radical assisted strategy for preparing ultra-small Pt decorated CNTs as a highly efficient counter electrode for dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 614-619.	10.3	29
139	Turning Indium Oxide into a Superior Electrocatalyst: Deterministic Heteroatoms. Scientific Reports, 2013, 3, 3109.	3.3	28
140	Structure disorder of graphitic carbon nitride induced by liquid-assisted grinding for enhanced photocatalytic conversion. RSC Advances, 2014, 4, 10676-10679.	3.6	28
141	Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions. Nano Research, 2017, 10, 3522-3533.	10.4	27
142	Nature of visible-light responsive fluorinated titanium dioxides. Journal of Materials Chemistry A, 2013, 1, 12948.	10.3	26
143	Ti0.89Si0.11O2 single crystals bound by high-index {201} facets showing enhanced visible-light photocatalytic hydrogen evolution. Chemical Communications, 2013, 49, 2016.	4.1	25
144	Enhancing photocatalytic activity of Sn doped TiO2 dominated with {105} facets. Catalysis Today, 2014, 225, 18-23.	4.4	25

9

#	Article	IF	CITATIONS
145	Bismuth oxyiodide microflower-derived catalysts for efficient CO ₂ electroreduction in a wide negative potential region. Chemical Communications, 2019, 55, 12392-12395.	4.1	25
146	In Operando Identification of In Situ Formed Metalloid Zinc ^{δ+} Active Sites for Highly Efficient Electrocatalyzed Carbon Dioxide Reduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25
147	Lattice Strain Directed Synthesis of Anatase TiO2 Single-Crystal Microplatelet Arrays on α-MoO3 (010) Template. Journal of Physical Chemistry B, 2004, 108, 819-823.	2.6	24
148	Disordered Co _{1.28} Mn _{1.71} O ₄ as a Visibleâ€Lightâ€Responsive Photocatalyst for Hydrogen Evolution. Chemistry - A European Journal, 2013, 19, 4123-4127.	3.3	24
149	MgO–Li 2 O catalysts templated by a PDMS–PEO comb-like copolymer for transesterification of vegetable oil to biodiesel. Fuel, 2016, 165, 215-223.	6.4	24
150	The origin of enhanced photocatalytic activities of hydrogenated TiO ₂ nanoparticles. Dalton Transactions, 2017, 46, 10694-10699.	3.3	24
151	Mediating the Local Oxygen-Bridge Interactions of Oxysalt/Perovskite Interface for Defect Passivation of Perovskite Photovoltaics. Nano-Micro Letters, 2021, 13, 177.	27.0	24
152	Self-Aligned Growth of Hexagonal TiO2 Nanosphere Arrays on α-MoO3 (010) Surface. Chemistry of Materials, 2003, 15, 3113-3120.	6.7	23
153	Crystal shape engineering of anatase TiO ₂ and its biomedical applications. CrystEngComm, 2015, 17, 6617-6631.	2.6	23
154	Direct insight into crystallization and stability of hybrid perovskite CH3NH3PbI3via solvothermal synthesis. Journal of Materials Chemistry A, 2015, 3, 15854-15857.	10.3	23
155	Ni–Co–O hole transport materials: gap state assisted hole extraction with superior electrical conductivity. Journal of Materials Chemistry A, 2019, 7, 20905-20910.	10.3	23
156	Graphite carbon nitride doped with a benzene ring for enhanced photocatalytic H ₂ evolution. Chemical Communications, 2021, 57, 3042-3045.	4.1	23
157	Assembly of ultrathin PbBiO2Br nanosheets with enhanced visible light photocatalytic properties. RSC Advances, 2013, 3, 10687.	3.6	22
158	La1-Ca Mn1-Al O3 perovskites as efficient catalysts for two-step thermochemical water splitting in conjunction with exceptional hydrogen yields. Chinese Journal of Catalysis, 2017, 38, 1079-1086.	14.0	22
159	Recent Advances in Photocatalysis over Metal–Organic Frameworksâ€Based Materials. Solar Rrl, 2020, 4, 1900438.	5.8	22
160	Switching the photocatalytic activity of g-C3N4 by homogenous surface chemical modification with nitrogen residues and vacancies. RSC Advances, 2015, 5, 21430-21433.	3.6	21
161	Carbon-coated three-dimensional WS2 film consisting of WO3@WS2 core-shell blocks and layered WS2 nanostructures as counter electrodes for efficient dye-sensitized solar cells. Electrochimica Acta, 2018, 266, 130-138.	5.2	21
162	A New Vaporâ€Phase Hydrothermal Method to Concurrently Grow ZnO Nanotube and Nanorod Array Films on Different Sides of a Zinc Foil Substrate. Chemistry - A European Journal, 2012, 18, 5165-5169.	3.3	20

#	Article	IF	CITATIONS
163	Impurity-Free Synthesis of Cube-Like Single-Crystal Anatase TiO2 for High Performance Dye-Sensitized Solar Cell. Industrial & Engineering Chemistry Research, 2013, 52, 4098-4102.	3.7	20
164	WO3 nanoflakes decorated with CuO clusters for enhanced photoelectrochemical water splitting. Progress in Natural Science: Materials International, 2018, 28, 200-204.	4.4	20
165	Diammonium-Cesium Lead Halide Perovskite with Phase-Segregated Interpenetrating Morphology for Photovoltaics. Journal of Physical Chemistry Letters, 2020, 11, 747-754.	4.6	20
166	Black Tungsten Nitride as a Metallic Photocatalyst for Overall Water Splitting Operable at up to 765 nm. Angewandte Chemie, 2017, 129, 7538-7542.	2.0	19
167	<i>In situ</i> and real-time ToF-SIMS analysis of light-induced chemical changes in perovskite CH ₃ NH ₃ PbI ₃ . Chemical Communications, 2018, 54, 5434-5437.	4.1	19
168	Enhanced Thermochemical Water Splitting through Formation of Oxygen Vacancy in La _{0.6} Sr _{0.4} BO _{3â~<i>Î</i>} (B=Cr, Mn, Fe, Co, and Ni) Perovskites. ChemPlusChem, 2018, 83, 924-928.	2.8	19
169	Boosting Photocatalytic Water Oxidation Over Bifunctional Rh ⁰ â€Rh ³⁺ Sites. Angewandte Chemie - International Edition, 2021, 60, 22761-22768.	13.8	19
170	Hydrophobic 1-octadecanethiol functionalized copper catalyst promotes robust high-current CO2 gas-diffusion electrolysis. Nano Research, 2022, 15, 1393-1398.	10.4	19
171	Ceria Foam with Atomically Thin Singleâ€Crystal Walls. Angewandte Chemie - International Edition, 2012, 51, 3611-3615.	13.8	18
172	Highly efficient overlayer derived from peroxotitanium for dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 1374-1379.	10.3	18
173	In situ growth of mirror-like platinum as highly-efficient counter electrode with light harvesting function for dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 1641-1646.	10.3	18
174	Geometric structure of rutile titanium dioxide (111) surfaces. Physical Review B, 2014, 90, .	3.2	18
175	Orange Zinc Germanate with Metallic GeGe Bonds as a Chromophoreâ€Like Center for Visibleâ€Lightâ€Driven Water Splitting. Angewandte Chemie - International Edition, 2015, 54, 11467-11471.	13.8	18
176	Local coulomb attraction for enhanced H2 evolution stability of metal sulfide photocatalysts. Applied Catalysis B: Environmental, 2018, 221, 152-157.	20.2	18
177	A low-valent cobalt oxide co-catalyst to boost photocatalytic water oxidation <i>via</i> enhanced hole-capturing ability. Journal of Materials Chemistry A, 2021, 9, 14786-14792.	10.3	18
178	Selfâ€Organized Co ₃ O ₄ ‧rCO ₃ Percolative Composites Enabling Nanosized Hole Transport Pathways for Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2106121.	14.9	18
179	Micro-Raman mapping on an anatase TiO2 single crystal with a large percentage of reactive (001) facets. Vibrational Spectroscopy, 2013, 68, 279-284.	2.2	17
180	Chemical Vapor Deposition of FeOCl Nanosheet Arrays and Their Conversion to Porous αâ€Fe ₂ O ₃ Photoanodes for Photoelectrochemical Water Splitting. Chemistry - A European Journal, 2015, 21, 18024-18028.	3.3	17

#	Article	IF	CITATIONS
181	Hierarchical structure engineering of brookite TiO2 crystals for enhanced photocatalytic and external antitumor property. Science Bulletin, 2016, 61, 1818-1825.	9.0	16
182	Water-soluble inorganic photocatalyst for overall water splitting. Applied Catalysis B: Environmental, 2017, 209, 247-252.	20.2	16
183	Controllable Synthesis of Hexagonal WO ₃ Nanoplates for Efficient Visibleâ€Lightâ€Driven Photocatalytic Oxygen Production. Chemistry - an Asian Journal, 2017, 12, 387-391.	3.3	16
184	Metallic Ni ₃ P/Ni Co atalyst To Enhance Photocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2017, 23, 16734-16737.	3.3	16
185	Sharpâ€Tipped Zinc Nanowires as an Efficient Electrocatalyst for Carbon Dioxide Reduction. Chemistry - A European Journal, 2018, 24, 15486-15490.	3.3	16
186	Boosting Alkaline Hydrogen Evolution Electrocatalysis over Metallic Nickel Sites through Synergistic Coupling with Vanadium Sesquioxide. ChemSusChem, 2019, 12, 5063-5069.	6.8	16
187	Titanate–silica mesostructured nanocables: synthesis, structural analysis and biomedical applications. Nanotechnology, 2010, 21, 065604.	2.6	15
188	Formation of high-quality perovskite thin film for planar heterojunction solar cells. RSC Advances, 2015, 5, 69502-69508.	3.6	15
189	Controllable synthesis of conical BiVO4 for photocatalytic water oxidation. Journal of Materials Chemistry A, 2020, 8, 2331-2335.	10.3	15
190	Operando Converting BiOCl into Bi2O2(CO3)xCly for Efficient Electrocatalytic Reduction of Carbon Dioxide to Formate. Nano-Micro Letters, 2022, 14, 121.	27.0	15
191	One dimensional hierarchical nanostructures composed of CdS nanosheets/nanoparticles and Ag nanowires with promoted photocatalytic performance. Inorganic Chemistry Frontiers, 2018, 5, 903-915.	6.0	13
192	Enhanced Thermochemical H2 Production on Ca-Doped Lanthanum Manganite Perovskites Through Optimizing the Dopant Level and Re-oxidation Temperature. Acta Metallurgica Sinica (English Letters), 2018, 31, 431-439.	2.9	13
193	One-step coating of commercial Ni nanoparticles with a Ni, N-co-doped carbon shell towards efficient electrocatalysts for CO ₂ reduction. Chemical Communications, 2020, 56, 7495-7498.	4.1	13
194	Structural rule of N-coordinated single-atom catalysts for electrochemical CO ₂ reduction. Journal of Materials Chemistry A, 2022, 10, 3585-3594.	10.3	13
195	Nâ€Modified NiO Surface for Superior Alkaline Hydrogen Evolution. ChemSusChem, 2018, 11, 1020-1024.	6.8	12
196	Accelerated proton transmission in metal–organic frameworks for the efficient reduction of CO ₂ in aqueous solutions. Journal of Materials Chemistry A, 2019, 7, 23055-23063.	10.3	12
197	Boric Acid Mediated Formation and Doping of NiO _{<i>x</i>} Layers for Perovskite Solar Cells with Efficiency over 21%. Solar Rrl, 2021, 5, 2000810.	5.8	12
198	Strain-free hybrid perovskite films based on a molecular buffer interface for efficient solar cells. Journal of Materials Chemistry A, 2022, 10, 10865-10871.	10.3	12

#	Article	IF	CITATIONS
199	Precisely controlled heterogeneous nucleation sites for TiO ₂ crystal growth. CrystEngComm, 2014, 16, 7502.	2.6	11
200	A novel strategy for tailoring copper oxide cluster with Pt-like activity for photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2015, 40, 15454-15459.	7.1	11
201	Bottom-Up Enhancement of g-C3N4Photocatalytic H2Evolution Utilising Disordering Intermolecular Interactions of Precursor. International Journal of Photoenergy, 2014, 2014, 1-8.	2.5	10
202	Ultrathin Hematite Photoanode with Gradient Ti Doping. Research, 2020, 2020, 5473217.	5.7	10
203	<i>In situ</i> reconstruction of vegetable sponge-like Bi ₂ O ₃ for efficient CO ₂ electroreduction to formate. Materials Chemistry Frontiers, 2022, 6, 1091-1097.	5.9	10
204	Vaporâ€Phase Hydrothermal Growth of Novel Segmentally Configured Nanotubular Crystal Structure. Small, 2013, 9, 3043-3050.	10.0	9
205	Platinum@regular indium oxide nanooctahedra as difunctional counter electrodes for dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 6331-6336.	10.3	9
206	Anatase TiO ₂ with nanopores for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2014, 16, 23038-23043.	2.8	9
207	Band-aligned C ₃ N _{4â^x} S _{3x/2} stabilizes CdS/CuInGaS ₂ photocathodes for efficient water reduction. Journal of Materials Chemistry A, 2017, 5, 3167-3171.	10.3	9
208	Towards the object-oriented design of active hydrogen evolution catalysts on single-atom alloys. Chemical Science, 2021, 12, 10634-10642.	7.4	9
209	Partially Oxidized Palladium Nanodots for Enhanced Electrocatalytic Carbon Dioxide Reduction. Chemistry - an Asian Journal, 2018, 13, 2800-2804.	3.3	8
210	Solution-processable nickel–chromium ternary oxide as an efficient hole transport layer for inverted planar perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 21792-21798.	10.3	8
211	Origin of Water-Induced Deactivation of MnO ₂ -Based Catalyst for Room-Temperature NO Oxidation: A First-Principles Microkinetic Study. ACS Catalysis, 2021, 11, 6835-6845.	11.2	8
212	Homogeneous doping of entire perovskite solar cells <i>via</i> alkali cation diffusion from the hole transport layer. Journal of Materials Chemistry A, 2021, 9, 9266-9271.	10.3	8
213	Inverted perovskite solar cells based on potassium salt-modified NiO _X hole transport layers. Materials Chemistry Frontiers, 2021, 5, 3614-3620.	5.9	8
214	Controlled Oriented Attachment of Bipyramidal‣haped Anatase TiO ₂ and Their Enhanced Performance in Dye‣ensitized Solar Cells. ChemPlusChem, 2015, 80, 805-809.	2.8	7
215	Oriented inorganic perovskite absorbers processed by colloidal-phase fumigation. Science China Materials, 2021, 64, 2421-2429.	6.3	7
216	Grey hematite photoanodes decrease the onset potential in photoelectrochemical water oxidation. Science Bulletin, 2021, 66, 1013-1021.	9.0	7

#	Article	IF	CITATIONS
217	Soft chemistry synthesis of high-crystalline orthogermanate CeGeO4: A new photocatalyst. Journal of Solid State Chemistry, 2013, 197, 204-208.	2.9	6
218	Thermally Induced Crystallization of High Quality CH ₃ NH ₃ PbI ₃ Film with Large Grains for Highly Efficient Perovskite Solar Cells. Chemistry - A European Journal, 2017, 23, 5658-5662.	3.3	6
219	Enhanced Surface Kinetics and Charge Transfer of BiVO ₄ Photoanodes by Rh ₂ O ₃ Cocatalyst Loading for Improved Solar Water Oxidation. Chemistry - an Asian Journal, 2022, 17, .	3.3	6
220	Fe ₃ O ₄ Modified Upâ€Conversion Luminescent Nanocrystals for Biological Applications. Chinese Journal of Chemistry, 2012, 30, 2774-2778.	4.9	5
221	Deposition of SnO ₂ on the Anatase TiO ₂ {105} Facets with High Photocatalytic Performance. Chinese Journal of Chemistry, 2013, 31, 1503-1507.	4.9	5
222	Novel PtO decorated MWCNTs as a highly efficient counter electrode for dye-sensitized solar cells. RSC Advances, 2015, 5, 8307-8310.	3.6	5
223	<scp>BiOI</scp> Nanosheets Grown by Chemical Vapor Deposition and Its Conversion to Highly Efficient <scp>BiVO₄</scp> Photoanode. Chinese Journal of Chemistry, 2017, 35, 30-34.	4.9	5
224	Amorphous ferric oxide as a hole-extraction and transfer layer on nanoporous bismuth vanadate photoanode for water oxidation. Chinese Journal of Catalysis, 2017, 38, 1045-1051.	14.0	5
225	Highly ordered mesoporous Co3O4 cubes/graphene oxide heterostructure as efficient counter electrodes in dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2021, 32, 16519-16527.	2.2	5
226	Highly Ethyleneâ€5elective Electrocatalytic CO ₂ Reduction Enabled by Isolated Cuâ^'S Motifs in Metal–Organic Framework Based Precatalysts. Angewandte Chemie, 2022, 134, .	2.0	5
227	Electrochemical conversion of CO ₂ to syngas with a stable H ₂ /CO ratio in a wide potential range over ligand-engineered metal–organic frameworks. Journal of Materials Chemistry A, 2022, 10, 9954-9959.	10.3	5
228	Oriented design of triple atom catalysts for electrocatalytic nitrogen reduction with the genetic-algorithm-based global optimization method driven by first principles calculations. Journal of Materials Chemistry A, 0, , .	10.3	5
229	Synthesis of well-defined functional crystals by high temperature gas-phase reactions. Science Bulletin, 2014, 59, 2135-2143.	1.7	4
230	Rhodium Dopants on Zn ₂ GeO ₄ Surfaces as Active Sites for Photocatalytic Water Splitting. ChemPlusChem, 2017, 82, 199-203.	2.8	4
231	Ce0.3Zr0.7O1.88N0.12 solid solution as a stable photocatalyst for visible light driven water splitting. Applied Catalysis B: Environmental, 2018, 224, 733-739.	20.2	4
232	Rapid-Heating-Triggered <i>in Situ</i> Solid-State Transformation of Amorphous TiO ₂ Nanotubes into Well-Defined Anatase Nanocrystals. Crystal Growth and Design, 2019, 19, 1086-1094.	3.0	4
233	A Dendrite‣tructured RbX (X=Br, I) Interlayer for CsPbI ₂ Br Perovskite Solar Cells with Over 15 % Stabilized Efficiency. ChemSusChem, 2020, 13, 5443-5448.	6.8	4
234	Spontaneous Passivation of Perovskite Solar Cells by Titanium Tetrafluoride. ACS Applied Energy Materials, 2020, 3, 4121-4126.	5.1	4

#	Article	IF	CITATIONS
235	Improved Photovoltaic Performance of CsPbI2Br Perovskite Films via Bivalent Metal Chloride Doping. Frontiers in Energy Research, 2021, 9, .	2.3	4
236	Non-selective adsorption of organic cations enables conformal surface capping of perovskite grains for stabilized photovoltaic operation. Cell Reports Physical Science, 2022, 3, 100760.	5.6	4
237	A Selfâ€Formed Stable PbI ₂ /NiO _x Interface with Increased Ni ³⁺ Centers for Perovskite Photovoltaics. Chemistry - A European Journal, 2022, 28, e202200202.	3.3	4
238	Installation of high-valence tungsten in MIL-125(Ti) for boosted photocatalytic hydrogen evolution. Science China Materials, 2022, 65, 1237-1244.	6.3	4
239	Stable Isolated Metal Atoms as Active Sites for Photocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2014, 20, 2088-2088.	3.3	3
240	Solar Cells: Highly Electrocatalytic Activity of RuO2Nanocrystals for Triiodide Reduction in Dye-Sensitized Solar Cells (Small 3/2014). Small, 2014, 10, 483-483.	10.0	3
241	Pores on TiO2 nanosheets with exposed high active facets. Materials Letters, 2014, 123, 254-257.	2.6	3
242	TiO ₂ cement for high-performance dye-sensitized solar cells. RSC Advances, 2016, 6, 83802-83807.	3.6	3
243	Molten Salt-Assisted Growth of Perovskite Films with Submillimeter-Sized Grains. Industrial & Engineering Chemistry Research, 2017, 56, 524-529.	3.7	3
244	A one-pot method for controlled synthesis and selective etching of organic-inorganic hybrid perovskite crystals. Journal of Energy Chemistry, 2019, 33, 149-154.	12.9	3
245	A template-free synthesis of mesoporous SrTiO ₃ single crystals. CrystEngComm, 2021, 23, 5595-5600.	2.6	2
246	Boosting Photocatalytic Water Oxidation Over Bifunctional Rh 0 â€Rh 3+ Sites. Angewandte Chemie, 2021, 133, 22943.	2.0	2
247	SYNTHETIC CHEMISTRY OF TITANIUM DIOXIDE. , 2011, , 281-328.		1
248	A facile route to search antioxidant additives for dry charged negative plate of the lead acid battery. Journal of Electroanalytical Chemistry, 2013, 689, 1-7.	3.8	1
249	Turning commercial transition-metal oxides into efficient electrocatalysts via facile hydrogen treatment. RSC Advances, 2014, 4, 12534.	3.6	1
250	Fabrication of TiO ₂ ∫β yclodextrin Doubleâ€Ring Composite and Its Photodegradation Performance. ChemistrySelect, 2017, 2, 11231-11234.	1.5	1
251	A Dendrite‣tructured RbX (X=Br, I) Interlayer for CsPbI 2 Br Perovskite Solar Cells with Over 15 % Stabilized Efficiency. ChemSusChem, 2020, 13, 5342-5342.	6.8	1
252	Molecularly Dispersed Cobalt Phthalocyanine Mediates Selective and Durable CO ₂ Reduction in a Membrane Flow Cell (Adv. Funct. Mater. 11/2022). Advanced Functional Materials, 2022, 32, .	14.9	1

#	Article	IF	CITATIONS
253	Frontispiece: Chemical Vapor Deposition of FeOCl Nanosheet Arrays and Their Conversion to Porous αâ€Fe ₂ O ₃ Photoanodes for Photoelectrochemical Water Splitting. Chemistry - A European Journal, 2015, 21, .	3.3	Ο
254	Carbon Nanotubes Codoped with Nickel and Nitrogen for Electrochemical Syngas Production. ACS Applied Nano Materials, 2020, 3, 8581-8585.	5.0	0
255	Innenrücktitelbild: Boosting Photocatalytic Water Oxidation Over Bifunctional Rh ⁰ â€Rh ³⁺ Sites (Angew. Chem. 42/2021). Angewandte Chemie, 2021, 133, 23211-23211.	2.0	Ο
256	Operando Metalloid Znδ+ Active Sites for Highly Efficient Carbon Dioxide Reduction Electrocatalysis. Angewandte Chemie, 0, , .	2.0	0