
Michael A Adams

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7389293/publications.pdf Version: 2024-02-01

MICHAEL & ADAMS

#	Article	IF	CITATIONS
1	A predictive model for creep deformation following vertebral compression fractures. Bone, 2020, 141, 115595.	2.9	1
2	Defects of the vertebral end plate: implications for disc degeneration depend on size. Spine Journal, 2017, 17, 727-737.	1.3	30
3	How are adjacent spinal levels affected by vertebral fracture and by vertebroplasty? A biomechanical study on cadaveric spines. Spine Journal, 2017, 17, 863-874.	1.3	26
4	Vertebroplasty reduces progressive ׳creep' deformity of fractured vertebrae. Journal of Biomechanics, 2016, 49, 869-874.	2.1	9
5	ISSLS Prize Winner. Spine, 2014, 39, 1365-1372.	2.0	72
6	Intervertebral discs influence vertebral body bone. Bone, 2013, 57, 476.	2.9	1
7	Intervertebral Disc Decompression Following Endplate Damage. Spine, 2013, 38, 1473-1481.	2.0	90
8	Increased Chondrocyte Apoptosis Is Associated with Progression of Osteoarthritis in Spontaneous Guinea Pig Models of the Disease. International Journal of Molecular Sciences, 2013, 14, 17729-17743.	4.1	41
9	Annulus Fissures Are Mechanically and Chemically Conducive to the Ingrowth of Nerves and Blood Vessels. Spine, 2012, 37, 1883-1891.	2.0	103
10	Intervertebral disc degeneration: evidence for two distinct phenotypes. Journal of Anatomy, 2012, 221, 497-506.	1.5	197
11	Vertebral deformity arising from an accelerated "creep―mechanism. European Spine Journal, 2012, 21, 1684-1691.	2.2	23
12	Vertebral fracture and intervertebral discs. Journal of Bone and Mineral Research, 2012, 27, 1432-1432.	2.8	7
13	Mechanical Function of Vertebral Body Osteophytes, as Revealed by Experiments on Cadaveric Spines. Spine, 2011, 36, 770-777.	2.0	64
14	Biomechanics of vertebral compression fractures and clinical application. Archives of Orthopaedic and Trauma Surgery, 2011, 131, 1703-1710.	2.4	57
15	Time-Dependent Compressive Deformation of the Ageing Spine. Spine, 2010, 35, 386-394.	2.0	47
16	Is Activation of the Back Muscles Impaired by Creep or Muscle Fatigue?. Spine, 2010, 35, 517-525.	2.0	73
17	ls kyphoplasty better than vertebroplasty in restoring normal mechanical function to an injured spine?. Bone, 2010, 46, 1050-1057.	2.9	23
18	Vertebral fractures in the elderly may not always be "osteoporotic― Bone, 2010, 47, 111-116.	2.9	42

MICHAEL A ADAMS

#	Article	IF	CITATIONS
19	Healing of a painful intervertebral disc should not be confused with reversing disc degeneration: Implications for physical therapies for discogenic back pain. Clinical Biomechanics, 2010, 25, 961-971.	1.2	83
20	Early enhanced exercise: Damaging or beneficial to joints?. Equine Veterinary Journal, 2009, 41, 515-516.	1.7	2
21	Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone. Bone, 2009, 44, 372-379.	2.9	150
22	Bone creep can cause progressive vertebral deformity. Bone, 2009, 45, 466-472.	2.9	58
23	The internal mechanical functioning of intervertebral discs and articular cartilage, and its relevance to matrix biology. Matrix Biology, 2009, 28, 384-389.	3.6	109
24	Vertebroplasty. Spine, 2009, 34, 2865-2873.	2.0	56
25	Biomechanical implications of degenerative joint disease in the apophyseal joints of human thoracic and lumbar vertebrae. American Journal of Physical Anthropology, 2008, 136, 318-326.	2.1	50
26	Can compressive stress be measured experimentally within the annulus fibrosus of degenerated intervertebral discs?. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2008, 222, 161-170.	1.8	16
27	Swelling of articular cartilage depends on the integrity of adjacent cartilage and bone. Biorheology, 2008, 45, 365-374.	0.4	21
28	Strength of the Cervical Spine in Compression and Bending. Spine, 2007, 32, 1612-1620.	2.0	60
29	When Are Intervertebral Discs Stronger Than Their Adjacent Vertebrae?. Spine, 2007, 32, 2455-2461.	2.0	43
30	Letter to the Editor. Clinical Biomechanics, 2007, 22, 486.	1.2	6
31	Mechanical efficacy of vertebroplasty: Influence of cement type, BMD, fracture severity, and disc degeneration. Bone, 2007, 40, 1110-1119.	2.9	71
32	The internal mechanical properties of cervical intervertebral discs as revealed by stress profilometry. European Spine Journal, 2007, 16, 1701-1709.	2.2	64
33	Outer annulus tears have less effect than endplate fracture on stress distributions inside intervertebral discs: Relevance to disc degeneration. Clinical Biomechanics, 2006, 21, 1013-1019.	1.2	51
34	What is Intervertebral Disc Degeneration, and What Causes It?. Spine, 2006, 31, 2151-2161.	2.0	1,339
35	Intervertebral Disc Degeneration Can Predispose to Anterior Vertebral Fractures in the Thoracolumbar Spine. Journal of Bone and Mineral Research, 2006, 21, 1409-1416.	2.8	137
36	Discogenic Origins of Spinal Instability. Spine, 2005, 30, 2621-2630.	2.0	158

MICHAEL A ADAMS

#	Article	IF	CITATIONS
37	Spine biomechanics. Journal of Biomechanics, 2005, 38, 1972-1983.	2.1	220
38	Increased apoptosis in human osteoarthritic cartilage corresponds to reduced cell density and expression of caspase-3. Arthritis and Rheumatism, 2004, 50, 507-515.	6.7	148
39	Neural arch load-bearing in old and degenerated spines. Journal of Biomechanics, 2004, 37, 197-204.	2.1	127
40	Cyclic Loading Can Denature Type II Collagen in Articular Cartilage. Connective Tissue Research, 2004, 45, 174-180.	2.3	16
41	Intervertebral Disc Degeneration Can Lead to "Stress-Shielding―of the Anterior Vertebral Body. Spine, 2004, 29, 774-782.	2.0	153
42	Propagation of surface fissures in articular cartilage in response to cyclic loading in vitro. Clinical Biomechanics, 2003, 18, 960-968.	1.2	55
43	Internal Stress Distribution in Cervical Intervertebral Discs. Journal of Spinal Disorders and Techniques, 2003, 16, 441-449.	1.9	90
44	Lumbar loading during lifting: a comparative study of three measurement techniques. Journal of Electromyography and Kinesiology, 2001, 11, 337-345.	1.7	65
45	How severe must repetitive loading be to kill chondrocytes in articular cartilage?. Osteoarthritis and Cartilage, 2001, 9, 499-507.	1.3	133
46	Effects of Backward Bending on Lumbar Intervertebral Discs. Spine, 2000, 25, 431-438.	2.0	96
47	Sudden and Unexpected Loading Generates High Forces on the Lumbar Spine. Spine, 2000, 25, 842-852.	2.0	86
48	Mechanical Initiation of Intervertebral Disc Degeneration. Spine, 2000, 25, 1625-1636.	2.0	632
49	Prediction of maximal back muscle strength from indices of body mass and fat-free body mass. British Journal of Rheumatology, 1999, 38, 652-655.	2.3	28
50	Experimental determination of stress distributions in articular cartilage before and after sustained loading. Clinical Biomechanics, 1999, 14, 88-96.	1.2	18
51	Personal Risk Factors for First-Time Low Back Pain. Spine, 1999, 24, 2497.	2.0	240
52	Dynamic Forces Acting on the Lumbar Spine During Manual Handling. Spine, 1999, 24, 698-703.	2.0	29
53	Repetitive lifting tasks fatigue the back muscles and increase the bending moment acting on the lumbar spine. Journal of Biomechanics, 1998, 31, 713-721.	2.1	154
54	Time-dependent changes in the lumbar spine's resistancc to bending. Clinical Biomechanics, 1996, 11, 194-200.	1.2	148

MICHAEL A ADAMS

#	Article	IF	CITATIONS
55	Sustained Loading Generates Stress Concentrations in Lumbar Intervertebral Discs. Spine, 1996, 21, 434-438.	2.0	219
56	Psychological Questionnaires: Do "Abnormal―Scores Precede or Follow First-time Low Back Pain?. Spine, 1996, 21, 2603-2611.	2.0	93
57	Spine Update Mechanical Testing of the Spine An Appraisal of Methodology, Results, and Conclusions. Spine, 1995, 20, 2151-2156.	2.0	121
58	Fatigue of the Erector Spinae Muscles. Spine, 1995, 20, 149-159.	2.0	104
59	Recent advances in lumbar spinal mechanics and their clinical significance. Clinical Biomechanics, 1995, 10, 3-19.	1.2	184
60	Bending and compressive stresses acting on the lumbar spine during lifting activities. Journal of Biomechanics, 1994, 27, 1237-1248.	2.1	211
61	Passive tissues help the back muscles to generate extensor moments during lifting. Journal of Biomechanics, 1994, 27, 1077-1085.	2.1	127
62	The clinical biomechanics award paper 1993 Posture and the compressive strength of the lumbar spine. Clinical Biomechanics, 1994, 9, 5-14.	1.2	165
63	Abnormal stress concentrations in lumbar intervertebral discs following damage to the vertebral bodies: a cause of disc failure?. European Spine Journal, 1993, 1, 214-221.	2.2	90
64	Tensile properties of the annulus fibrosus. European Spine Journal, 1993, 2, 203-208.	2.2	78
65	Tensile properties of the annulus fibrosus. European Spine Journal, 1993, 2, 209-214.	2.2	133
66	Influence of lumbar and hip mobility on the bending stresses acting on the lumbar spine. Clinical Biomechanics, 1993, 8, 185-192.	1.2	92
67	Internal Intervertebral Disc Mechanics as Revealed by Stress Profilometry. Spine, 1992, 17, 66-73.	2.0	305
68	Development and validation of a new transducer for intradiscal pressure measurement. Journal of Biomedical Engineering, 1992, 14, 495-498.	0.7	50
69	A technique for quantifying the bending moment acting on the lumbar spine in vivo. Journal of Biomechanics, 1991, 24, 117-126.	2.1	143
70	Prolapsed Intervertebral Disc. Spine, 1982, 7, 184-191.	2.0	388