
## Tim J Daniell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7389079/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Ploughing up the wood-wide web?. Nature, 1998, 394, 431-431.                                                                                                                              | 27.8 | 860       |
| 2  | Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytologist, 2015, 206, 107-117.                                                          | 7.3  | 805       |
| 3  | Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiology<br>Ecology, 2001, 36, 203-209.                                                             | 2.7  | 516       |
| 4  | Largeâ€ <b>s</b> cale parallel 454 sequencing reveals host ecological group specificity of arbuscular<br>mycorrhizal fungi in a boreonemoral forest. New Phytologist, 2009, 184, 424-437. | 7.3  | 481       |
| 5  | Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Molecular Ecology, 2002, 11, 1555-1564.                                          | 3.9  | 390       |
| 6  | Pathogenesis, parasitism and mutualism in the trophic space of microbe–plant interactions. Trends in<br>Microbiology, 2010, 18, 365-373.                                                  | 7.7  | 278       |
| 7  | Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance.<br>Ecological Entomology, 2004, 29, 60-65.                                                | 2.2  | 227       |
| 8  | Three-dimensional Microorganization of the Soil–Root–Microbe System. Microbial Ecology, 2006, 52,<br>151-158.                                                                             | 2.8  | 227       |
| 9  | Arbuscular mycorrhizal fungal communities in plant roots are not random assemblages. FEMS<br>Microbiology Ecology, 2011, 78, 103-115.                                                     | 2.7  | 183       |
| 10 | Soil nitrate reducing processes – drivers, mechanisms for spatial variation, and significance for nitrous oxide production. Frontiers in Microbiology, 2012, 3, 407.                      | 3.5  | 174       |
| 11 | Symbiotic relationships between soil fungi and plants reduce N2O emissions from soil. ISME Journal, 2014, 8, 1336-1345.                                                                   | 9.8  | 156       |
| 12 | High diversity of arbuscular mycorrhizal fungi in a boreal herbâ€rich coniferous forest. New<br>Phytologist, 2008, 179, 867-876.                                                          | 7.3  | 149       |
| 13 | Links between Plant and Rhizoplane Bacterial Communities in Grassland Soils, Characterized Using<br>Molecular Techniques. Applied and Environmental Microbiology, 2005, 71, 6784-6792.    | 3.1  | 144       |
| 14 | Diversity of Bacteria Associated with Natural AphidPopulations. Applied and Environmental<br>Microbiology, 2003, 69, 7216-7223.                                                           | 3.1  | 129       |
| 15 | Arbuscular mycorrhizal hyphae promote priming of native soil organic matter mineralisation. Plant and Soil, 2016, 408, 243-254.                                                           | 3.7  | 96        |
| 16 | Fungal and bacterial denitrification are differently affected by long-term pH amendment and cultivation of arable soil. Soil Biology and Biochemistry, 2012, 54, 25-35.                   | 8.8  | 93        |
| 17 | Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots. Environmental<br>Microbiology, 2008, 10, 534-541.                                                      | 3.8  | 86        |
| 18 | Isolation and identification of synthetic pyrethroid-degrading bacteria. Journal of Applied<br>Microbiology, 2002, 92, 534-540.                                                           | 3.1  | 83        |

| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Integrating soil quality changes to arable agricultural systems following organic matter addition, or adoption of a ley-arable rotation. Applied Soil Ecology, 2010, 46, 43-53.                                                                          | 4.3  | 76        |
| 20 | Viruses in soils: morphological diversity and abundance in the rhizosphere. Annals of Applied Biology, 2009, 155, 51-60.                                                                                                                                 | 2.5  | 75        |
| 21 | Distribution of soil carbon and microbial biomass in arable soils under different tillage regimes.<br>Plant and Soil, 2011, 338, 17-25.                                                                                                                  | 3.7  | 72        |
| 22 | Community-level responses of metabolically-active soil microorganisms to the quantity and quality of substrate inputs. Soil Biology and Biochemistry, 2004, 36, 841-848.                                                                                 | 8.8  | 68        |
| 23 | Determination of the optimal soil sample size to accurately characterise nematode communities in soil. Soil Biology and Biochemistry, 2015, 80, 89-91.                                                                                                   | 8.8  | 62        |
| 24 | Phyllosphere of staple crops under pig manure fertilization, a reservoir of antibiotic resistance genes. Environmental Pollution, 2019, 252, 227-235.                                                                                                    | 7.5  | 62        |
| 25 | Does microbial habitat or community structure drive the functional stability of microbes to stresses following re-vegetation of a severely degraded soil?. Soil Biology and Biochemistry, 2010, 42, 850-859.                                             | 8.8  | 60        |
| 26 | Molecular sequencing and morphological analysis of a nematode community. Applied Soil Ecology, 2006, 32, 325-337.                                                                                                                                        | 4.3  | 58        |
| 27 | Arbuscular Mycorrhizal Fungal Networks Vary throughout the Growing Season and between<br>Successional Stages. PLoS ONE, 2013, 8, e83241.                                                                                                                 | 2.5  | 58        |
| 28 | Organic matter chemistry controls greenhouse gas emissions from permafrost peatlands. Soil<br>Biology and Biochemistry, 2016, 98, 42-53.                                                                                                                 | 8.8  | 55        |
| 29 | The Effects of Arbuscular Mycorrhizal Fungal Colonisation on Nutrient Status, Growth,<br>Productivity, and Canker Resistance of Apple (Malus pumila). Frontiers in Microbiology, 2018, 9, 1461.                                                          | 3.5  | 53        |
| 30 | DNA extraction from soil nematodes for multi-sample community studies. Applied Soil Ecology, 2008, 38, 20-26.                                                                                                                                            | 4.3  | 50        |
| 31 | Long-term effect of re-vegetation on the microbial community of a severely eroded soil in sub-tropical<br>China. Plant and Soil, 2010, 328, 447-458.                                                                                                     | 3.7  | 50        |
| 32 | Differential effect of arbuscular mycorrhizal fungal communities from ecosystems along<br>management gradient on the growth of forest understorey plant species. Soil Biology and<br>Biochemistry, 2009, 41, 2141-2146.                                  | 8.8  | 49        |
| 33 | Compound driven differences in N2 and N2O emission from soil; the role of substrate use efficiency and the microbial community. Soil Biology and Biochemistry, 2017, 106, 90-98.                                                                         | 8.8  | 49        |
| 34 | Spatial pattern and species richness of boreonemoral forest understorey and its determinants—A comparison of differently managed forests. Forest Ecology and Management, 2007, 250, 64-70.                                                               | 3.2  | 47        |
| 35 | Does reduced usage of antibiotics in livestock production mitigate the spread of antibiotic resistance in soil, earthworm guts, and the phyllosphere?. Environment International, 2020, 136, 105359.                                                     | 10.0 | 47        |
| 36 | Genotypic variation in the ability of landraces and commercial cereal varieties to avoid manganese<br>deficiency in soils with limited manganese availability: is there a role for rootâ€exuded phytases?.<br>Physiologia Plantarum, 2014, 151, 243-256. | 5.2  | 46        |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Extracellular release of  a heterologous phytase from roots of transgenic plants: does manipulation of rhizosphere biochemistry impact microbial community structure?. FEMS Microbiology Ecology, 2009, 70, 433-445.                      | 2.7 | 44        |
| 38 | A commercial arbuscular mycorrhizal inoculum increases root colonization across wheat cultivars<br>but does not increase assimilation of mycorrhizaâ€acquired nutrients. Plants People Planet, 2021, 3,<br>588-599.                       | 3.3 | 44        |
| 39 | Microbial and microfaunal communities in phosphorus limited, grazed grassland change composition but maintain homeostatic nutrient stoichiometry. Soil Biology and Biochemistry, 2014, 75, 94-101.                                        | 8.8 | 41        |
| 40 | DNA Barcoding and Morphological Identification of Benthic Nematodes Assemblages of Estuarine<br>Intertidal Sediments: Advances in Molecular Tools for Biodiversity Assessment. Frontiers in Marine<br>Science, 2017, 4, .                 | 2.5 | 41        |
| 41 | Variable response of nirK and nirS containing denitrifier communities to long-term pH manipulation and cultivation. FEMS Microbiology Letters, 2018, 365, .                                                                               | 1.8 | 40        |
| 42 | A comparison of molecular methods for monitoring soil nematodes and their use as biological indicators. European Journal of Soil Biology, 2010, 46, 319-324.                                                                              | 3.2 | 38        |
| 43 | Improved real-time PCR estimation of gene copy number in soil extracts using an artificial reference.<br>Journal of Microbiological Methods, 2012, 91, 38-44.                                                                             | 1.6 | 37        |
| 44 | Effect of model root exudate on denitrifier community dynamics and activity at different water-filled pore space levels in a fertilised soil. Soil Biology and Biochemistry, 2018, 120, 70-79.                                            | 8.8 | 37        |
| 45 | Ensuring water resource security in China; the need for advances in evidence-based policy to support sustainable management. Environmental Science and Policy, 2017, 75, 65-69.                                                           | 4.9 | 36        |
| 46 | Carbon mineralization kinetics and soil biological characteristics as influenced by manure addition in soil incubated at a range of temperatures. European Journal of Soil Biology, 2011, 47, 392-399.                                    | 3.2 | 35        |
| 47 | Mineral and organic fertilization alters the microbiome of a soil nematode Dorylaimus stagnalis and its resistome. Science of the Total Environment, 2019, 680, 70-78.                                                                    | 8.0 | 35        |
| 48 | Plant influence on nitrification. Biochemical Society Transactions, 2011, 39, 275-278.                                                                                                                                                    | 3.4 | 31        |
| 49 | Soil fungal community composition does not alter along a latitudinal gradient through the maritime and sub-Antarctic. Fungal Ecology, 2012, 5, 403-408.                                                                                   | 1.6 | 31        |
| 50 | Bioindication potential of using molecular characterisation of the nematode community: Response to soil tillage. European Journal of Soil Biology, 2012, 49, 92-97.                                                                       | 3.2 | 30        |
| 51 | How does partial substitution of chemical fertiliser with organic forms increase sustainability of agricultural production?. Science of the Total Environment, 2022, 803, 149933.                                                         | 8.0 | 28        |
| 52 | How many fungi does it take to change a plant community?. Trends in Plant Science, 1999, 4, 81-82.                                                                                                                                        | 8.8 | 27        |
| 53 | A novel molecular approach for rapid assessment of soil nematode assemblages – variation, validation and potential applications. Methods in Ecology and Evolution, 2012, 3, 12-23.                                                        | 5.2 | 26        |
| 54 | A widely distributed phosphate-insensitive phosphatase presents a route for rapid organophosphorus<br>remineralization in the biosphere. Proceedings of the National Academy of Sciences of the United<br>States of America, 2022, 119, . | 7.1 | 26        |

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Plant–environment microscopy tracks interactions of <i>Bacillus subtilis</i> with plant roots<br>across the entire rhizosphere. Proceedings of the National Academy of Sciences of the United States<br>of America, 2021, 118, . | 7.1  | 24        |
| 56 | Resource sharing in plant–fungus communities: did the carbon move for you?. Trends in Ecology and<br>Evolution, 1999, 14, 70-70.                                                                                                 | 8.7  | 21        |
| 57 | Microbial population dynamics related to temporal variations in nitrification in three arable fields.<br>European Journal of Soil Science, 2003, 54, 707-714.                                                                    | 3.9  | 20        |
| 58 | Using nematode communities to test a European scale soil biological monitoring programme for policy development. Applied Soil Ecology, 2016, 97, 78-85.                                                                          | 4.3  | 19        |
| 59 | Gas chromatographic metabolic profiling: A sensitive tool for functional microbial ecology. Journal of Microbiological Methods, 2008, 75, 491-500.                                                                               | 1.6  | 18        |
| 60 | Insights into the mechanism of the interference of sulfadiazine on soil microbial community and function. Journal of Hazardous Materials, 2021, 419, 126388.                                                                     | 12.4 | 18        |
| 61 | How Conserved Are the Bacterial Communities Associated With Aphids? A Detailed Assessment of the<br><l>Brevicoryne brassicae</l> (Hemiptera: Aphididae) Using 16S rDNA. Environmental<br>Entomology, 2012, 41, 1386-1397.        | 1.4  | 17        |
| 62 | Genotypic variation in maize ( <i>Zea mays</i> ) influences rates of soil organic matter mineralization and gross nitrification. New Phytologist, 2021, 231, 2015-2028.                                                          | 7.3  | 16        |
| 63 | Greater coverage of the phylum Nematoda in SSU rDNA studies. Biology and Fertility of Soils, 2011, 47, 333-339.                                                                                                                  | 4.3  | 15        |
| 64 | Microbial properties and nitrogen contents of arable soils under different tillage regimes. Soil Use and Management, 2014, 30, 152-159.                                                                                          | 4.9  | 15        |
| 65 | The potential role of Mucoromycotina â€~fine root endophytes' in plant nitrogen nutrition. Physiologia<br>Plantarum, 2022, 174, e13715.                                                                                          | 5.2  | 14        |
| 66 | Alternate thermoregulation and functional binding of <i>Escherichia coli</i> type 1 fimbriae in environmental and animal isolates. FEMS Microbiology Letters, 2016, 363, fnw251.                                                 | 1.8  | 13        |
| 67 | Mycorrhizas for a changing world: Sustainability, conservation, and society. Plants People Planet, 2020, 2, 98-103.                                                                                                              | 3.3  | 13        |
| 68 | Variation in mycorrhizal growth response among a spring wheat mapping population shows potential to breed for symbiotic benefit. Food and Energy Security, 2022, 11, .                                                           | 4.3  | 13        |
| 69 | Alfalfa cell cultures treated with a fungal elicitor accumulate flavone metabolites rather than<br>isoflavones in the presence of the methylation inhibitor tubericidin. Phytochemistry, 1997, 44, 285-291.                      | 2.9  | 12        |
| 70 | Temporal and land use effects on soil bacterial community structure of the machair, an EU Habitats<br>Directive Annex I low-input agricultural system. Applied Soil Ecology, 2014, 73, 116-123.                                  | 4.3  | 12        |
| 71 | Changes in protein methylation associated with the elicitation response in cell cultures of alfalfa<br>(Medicago sativaL.). FEBS Letters, 1995, 360, 57-61.                                                                      | 2.8  | 10        |
| 72 | Development of a genetically modified bacteriophage for use in tracing sources of pollution. Journal of Applied Microbiology, 2000, 88, 860-869.                                                                                 | 3.1  | 10        |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Prevalence and diversity of Escherichia coli isolated from a barley trial supplemented with bulky<br>organic soil amendments: green compost and bovine slurry. Letters in Applied Microbiology, 2014, 58,<br>205-212. | 2.2 | 9         |
| 74 | Plant treatment, pollutant load, and soil type effects in rhizosphere ecology of trace element polluted soils. Ecotoxicology and Environmental Safety, 2010, 73, 970-981.                                             | 6.0 | 8         |
| 75 | Preceding crop and weed management history affect denitrification and denitrifier community structure throughout the development of durum wheat. Agriculture, Ecosystems and Environment, 2015, 212, 49-63.           | 5.3 | 6         |
| 76 | Directed terminal restriction analysis tool (DRAT): an aid to enzyme selection for directed<br>terminalâ€restriction fragment length polymorphisms. Methods in Ecology and Evolution, 2012, 3, 24-28.                 | 5.2 | 5         |
| 77 | Impact of land use and management practices on soil nematode communities of Machair, a low-input calcareous ecosystem of conservation importance. Science of the Total Environment, 2020, 738, 140164.                | 8.0 | 5         |
| 78 | Role of microbial communities in conferring resistance and resilience of soil carbon and nitrogen cycling following contrasting stresses. European Journal of Soil Biology, 2021, 104, 103308.                        | 3.2 | 5         |
| 79 | Evidence of a plant genetic basis for maize roots impacting soil organic matter mineralization. Soil<br>Biology and Biochemistry, 2021, 161, 108402.                                                                  | 8.8 | 5         |
| 80 | Molecular tools for analysing nematode assemblages , 2009, , 188-207.                                                                                                                                                 |     | 5         |
| 81 | Probing soil physical and biological resilience data from a broad sampling of arable farms in<br>Scotland. Soil Use and Management, 2015, 31, 491-503.                                                                | 4.9 | 4         |
| 82 | Soil carbon and nitrogen and barley yield responses to repeated additions of compost and slurry.<br>Journal of Agricultural Science, 2017, 155, 141-155.                                                              | 1.3 | 4         |
| 83 | Methylation reactions and the phytoalexin response in alfalfa suspension cultures. Planta, 1997, 201, 359-367.                                                                                                        | 3.2 | 3         |
|    |                                                                                                                                                                                                                       |     |           |

Using molecular phylogeny to investigate the bacteria associated with the cabbage aphid (Brevicoryne) Tj ETQq0 0 0 rgBT /Overlock 10 1.8 0 2009, 153, S47.