Xiaowei Cheng

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/738863/xiaowei-cheng-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

46
papers

1,939
citations

24
h-index
g-index

46
ext. papers

2,337
ext. citations

10.4
avg, IF
L-index

#	Paper	IF	Citations
46	One-dimensional nanochains consisting of magnetic core and mesoporous aluminosilicate for use as efficient nanocatalysts. <i>Nano Research</i> , 2021 , 14, 4197	10	3
45	Smart Cargo Delivery System based on Mesoporous Nanoparticles for Bone Disease Diagnosis and Treatment. <i>Advanced Science</i> , 2021 , 8, e2004586	13.6	5
44	Ultra-low temperature preparation of mullite glass-ceramics with high transparency sintered from EMT-type zeolite. <i>Journal of the American Ceramic Society</i> , 2021 , 104, 3158-3166	3.8	2
43	Controllable Multicomponent Co-Assembly Approach to Ordered Mesoporous Zirconia Supported with Well-Dispersed Tungsten Oxide Clusters as High-Performance Catalysts. <i>ChemCatChem</i> , 2021 , 13, 2863-2872	5.2	1
42	Recent advance in synthesis and application of heteroatom zeolites. <i>Chinese Chemical Letters</i> , 2021 , 32, 328-338	8.1	6
41	General and Efficient Synthesis of Two-Dimensional Monolayer Mesoporous Materials with Diverse Framework Compositions. <i>ACS Applied Materials & English & En</i>	9.5	1
40	Mesoporous Materials-Based Electrochemical Biosensors from Enzymatic to Nonenzymatic. <i>Small</i> , 2021 , 17, e1904022	11	27
39	Highly dispersed Pt nanoparticles on ultrasmall EMT zeolite: A peroxidase-mimic nanoenzyme for detection of HO or glucose. <i>Journal of Colloid and Interface Science</i> , 2020 , 570, 300-311	9.3	22
38	An Efficient Emulsion-Induced Interface Assembly Approach for Rational Synthesis of Mesoporous Carbon Spheres with Versatile Architectures. <i>Advanced Functional Materials</i> , 2020 , 30, 2002488	15.6	22
37	A Universal Lab-on-Salt-Particle Approach to 2D Single-Layer Ordered Mesoporous Materials. <i>Advanced Materials</i> , 2020 , 32, e1906653	24	19
36	Au Nanoparticles Decorated Mesoporous SiO -WO Hybrid Materials with Improved Pore Connectivity for Ultratrace Ethanol Detection at Low Operating Temperature. <i>Small</i> , 2020 , 16, e200477	2 ¹¹	17
35	Confined interfacial micelle aggregating assembly of ordered macro-mesoporous tungsten oxides for HS sensing. <i>Nanoscale</i> , 2020 , 12, 20811-20819	7.7	7
34	Hollow Mesoporous Carbon Nanospheres Loaded with Pt Nanoparticles for Colorimetric Detection of Ascorbic Acid and Glucose. <i>ACS Applied Nano Materials</i> , 2020 , 3, 4586-4598	5.6	18
33	Cementing Mesoporous ZnO with Silica for Controllable and Switchable Gas Sensing Selectivity. <i>Chemistry of Materials</i> , 2019 , 31, 8112-8120	9.6	31
32	Ordered mesoporous CoO/CeO2 heterostructures with highly crystallized walls and enhanced peroxidase-like bioactivity. <i>Applied Materials Today</i> , 2019 , 15, 482-493	6.6	24
31	Nonsacrificial Self-Template Synthesis of Colloidal Magnetic Yolk-Shell Mesoporous Organosilicas for Efficient Oil/Water Interface Catalysis. <i>Small</i> , 2019 , 15, e1805465	11	28
30	sp-Hybridized Carbon-Containing Block Copolymer Templated Synthesis of Mesoporous Semiconducting Metal Oxides with Excellent Gas Sensing Property. <i>Accounts of Chemical Research</i> , 2019 , 52, 714-725	24.3	59

29	Amphiphilic block copolymers directed synthesis of mesoporous nickel-based oxides with bimodal mesopores and nanocrystal-assembled walls. <i>Chinese Chemical Letters</i> , 2019 , 30, 2003-2008	8.1	14
28	Large-Pore Mesoporous CeO -ZrO Solid Solutions with In-Pore Confined Pt Nanoparticles for Enhanced CO Oxidation. <i>Small</i> , 2019 , 15, e1903058	11	27
27	Rational Synthesis and Gas Sensing Performance of Ordered Mesoporous Semiconducting WO/NiO Composites. <i>ACS Applied Materials & Acs Applied & Acs Applie</i>	9.5	48
26	A General and Straightforward Route to Noble Metal-Decorated Mesoporous Transition-Metal Oxides with Enhanced Gas Sensing Performance. <i>Small</i> , 2019 , 15, e1904240	11	24
25	Pore Engineering of Mesoporous Tungsten Oxides for Ultrasensitive Gas Sensing. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1801269	4.6	26
24	Rational design of a stable peroxidase mimic for colorimetric detection of HO and glucose: A synergistic CeO/Zeolite Y nanocomposite. <i>Journal of Colloid and Interface Science</i> , 2019 , 535, 425-435	9.3	51
23	3D Interconnected Mesoporous Alumina with Loaded Hemoglobin as a Highly Active Electrochemical Biosensor for H O. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1800149	10.1	25
22	Sensors: Pt Nanoparticles Sensitized Ordered Mesoporous WO3 Semiconductor: Gas Sensing Performance and Mechanism Study (Adv. Funct. Mater. 6/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870040	15.6	5
21	Ordered Mesoporous Tin Oxide Semiconductors with Large Pores and Crystallized Walls for High-Performance Gas Sensing. <i>ACS Applied Materials & Damp; Interfaces</i> , 2018 , 10, 1871-1880	9.5	63
20	Polymerization-Induced Colloid Assembly Route to Iron Oxide-Based Mesoporous Microspheres for Gas Sensing and Fenton Catalysis. <i>ACS Applied Materials & Damp; Interfaces</i> , 2018 , 10, 13028-13039	9.5	20
19	Ordered porous metal oxide semiconductors for gas sensing. <i>Chinese Chemical Letters</i> , 2018 , 29, 405-41	6 .1	94
18	Amphiphilic Block Copolymers Directed Interface Coassembly to Construct Multifunctional Microspheres with Magnetic Core and Monolayer Mesoporous Aluminosilicate Shell. <i>Advanced Materials</i> , 2018 , 30, e1800345	24	39
17	Rational Design of Yolk-Shell CuO/Silicalite-1@mSiO Composites for a High-Performance Nonenzymatic Glucose Biosensor. <i>Langmuir</i> , 2018 , 34, 7663-7672	4	21
16	Pt Nanoparticles Sensitized Ordered Mesoporous WO3 Semiconductor: Gas Sensing Performance and Mechanism Study. <i>Advanced Functional Materials</i> , 2018 , 28, 1705268	15.6	160
15	Controllable Interface-Induced Co-Assembly toward Highly Ordered Mesoporous Pt@TiO2/g-C3N4 Heterojunctions with Enhanced Photocatalytic Performance. <i>Advanced Functional Materials</i> , 2018 , 28, 1806214	15.6	68
14	Synthesis of ZSM-5 aggregates made of zeolite nanocrystals through a simple solvent-free method. <i>Microporous and Mesoporous Materials</i> , 2017 , 243, 112-118	5.3	37
13	Plasmolysis-Inspired Nanoengineering of Functional Yolk-Shell Microspheres with Magnetic Core and Mesoporous Silica Shell. <i>Journal of the American Chemical Society</i> , 2017 , 139, 15486-15493	16.4	146
12	Mesoporous Tungsten Oxides with Crystalline Framework for Highly Sensitive and Selective Detection of Foodborne Pathogens. <i>Journal of the American Chemical Society</i> , 2017 , 139, 10365-10373	16.4	142

11	Controlled Synthesis of Ordered Mesoporous Carbon-Cobalt Oxide Nanocomposites with Large Mesopores and Graphitic Walls. <i>Chemistry of Materials</i> , 2016 , 28, 7773-7780	9.6	57
10	Chelation-assisted soft-template synthesis of ordered mesoporous zinc oxides for low concentration gas sensing. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 15064-15071	13	68
9	Amphiphilic Block Copolymer Templated Synthesis of Mesoporous Indium Oxides with Nanosheet-Assembled Pore Walls. <i>Chemistry of Materials</i> , 2016 , 28, 7997-8005	9.6	59
8	An FeMntu/SiO2@silicalite-1 catalyst for CO hydrogenation: the role of the zeolite shell on light-olefin production. <i>Catalysis Science and Technology</i> , 2016 , 6, 3559-3567	5.5	7
7	Synthesis of Ordered Mesoporous Silica with Tunable Morphologies and Pore Sizes via a Nonpolar Solvent-Assisted StBer Method. <i>Chemistry of Materials</i> , 2016 , 28, 2356-2362	9.6	131
6	An Interface Coassembly in Biliquid Phase: Toward Core-Shell Magnetic Mesoporous Silica Microspheres with Tunable Pore Size. <i>Journal of the American Chemical Society</i> , 2015 , 137, 13282-9	16.4	208
5	CuO nanoparticles incorporated in hierarchical MFI zeolite as highly active electrocatalyst for non-enzymatic glucose sensing. <i>Colloids and Surfaces B: Biointerfaces</i> , 2015 , 125, 206-12	6	24
4	Fast synthesis of nanosized zeolite beta from a low-seeded, low-templated dry gel with a seeding-steam-assisted conversion method. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 1247-1251	13	44
3	Hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin immobilized on gold nanoparticles in a hierarchically porous zeolite. <i>Mikrochimica Acta</i> , 2013 , 180, 1333-1340	5.8	21
2	Catalytic Performances of Binder-free ZSM-5 Catalysts for Dehydration of Crude Methanol to Dimethyl Ether. <i>Chinese Journal of Chemistry</i> , 2010 , 28, 183-188	4.9	8
1	High-silica ferrierite zeolite self-transformed from aluminosilicate gel. <i>ChemPhysChem</i> , 2006 , 7, 1198-2	203.2	10