Joyce Keyak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/738808/publications.pdf Version: 2024-02-01

LOVCE KEVAK

#	Article	IF	CITATIONS
1	Automated three-dimensional finite element modelling of bone: a new method. Journal of Biomedical Engineering, 1990, 12, 389-397.	0.7	344
2	Improved prediction of proximal femoral fracture load using nonlinear finite element models. Medical Engineering and Physics, 2001, 23, 165-173.	1.7	261
3	Volumetric quantitative computed tomography of the proximal femur: Precision and relation to bone strength. Bone, 1997, 21, 101-108.	2.9	253
4	Reduction in proximal femoral strength due to long-duration spaceflight. Bone, 2009, 44, 449-453.	2.9	206
5	Prediction of fracture location in the proximal femur using finite element models. Medical Engineering and Physics, 2001, 23, 657-664.	1.7	174
6	Male–female differences in the association between incident hip fracture and proximal femoral strength: A finite element analysis study. Bone, 2011, 48, 1239-1245.	2.9	145
7	Effect of finite element model loading condition on fracture risk assessment in men and women: The AGES-Reykjavik study. Bone, 2013, 57, 18-29.	2.9	89
8	Proximal femoral density distribution and structure in relation to age and hip fracture risk in women. Journal of Bone and Mineral Research, 2013, 28, 537-546.	2.8	63
9	Age-related loss of proximal femoral strength in elderly men and women: The Age Gene/Environment Susceptibility Study — Reykjavik. Bone, 2012, 50, 743-748.	2.9	59
10	Identify fracture-critical regions inside the proximal femur using statistical parametric mapping. Bone, 2009, 44, 596-602.	2.9	58
11	Comparison of 3D finite element analysis derived stiffness and BMD to determine the failure load of the excised proximal femur. Medical Engineering and Physics, 2009, 31, 668-672.	1.7	41
12	Young-elderly differences in bone density, geometry and strength indices depend on proximal femur sub-region: A cross sectional study in Caucasian-American women. Bone, 2006, 39, 152-158.	2.9	32
13	Fabrication and characterization of microscale sensors for bone surface strain measurement. , 0, , .		15
14	Hyperlipidemia affects multiscale structure and strength of murine femur. Journal of Biomechanics, 2014, 47, 2436-2443.	2.1	11
15	Hip load capacity and yield load in men and women of all ages. Bone, 2020, 137, 115321.	2.9	10
16	A preliminary safety assessment of vertebral augmentation with ³² P brachytherapy bone cement. Physics in Medicine and Biology, 2022, 67, 075007.	3.0	3