
Geon-Woo Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7387827/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hepatitis B Virus X Protein Expression Is Tightly Regulated by N6-Methyladenosine Modification of Its mRNA. Journal of Virology, 2022, 96, JVI0165521.	1.5	13
2	N6-methyladenosine modification of the 5′ epsilon structure of the HBV pregenome RNA regulates its encapsidation by the viral core protein. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
3	HBVâ€Induced Increased N6 Methyladenosine Modification of PTEN RNA Affects Innate Immunity and Contributes to HCC. Hepatology, 2021, 73, 533-547.	3.6	86
4	Hepatitis B virus X protein recruits methyltransferases to affect cotranscriptional N6-methyladenosine modification of viral/host RNAs. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	47
5	N6-methyladenosine modification of HCV RNA genome regulates cap-independent IRES-mediated translation via YTHDC2 recognition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	38
6	The role of N6-methyladenosine modification in the life cycle and disease pathogenesis of hepatitis B and C viruses. Experimental and Molecular Medicine, 2021, 53, 339-345.	3.2	16
7	The RNA Binding Proteins YTHDC1 and FMRP Regulate the Nuclear Export of <i>N</i> ⁶ -Methyladenosine-Modified Hepatitis B Virus Transcripts and Affect the Viral Life Cycle. Journal of Virology, 2021, 95, e0009721.	1.5	32
8	A Novel Frameshifting Inhibitor Having Antiviral Activity against Zoonotic Coronaviruses. Viruses, 2021, 13, 1639.	1.5	7
9	Epitranscriptomic(N6-methyladenosine) Modification of Viral RNA and Virus-Host Interactions. Frontiers in Cellular and Infection Microbiology, 2020, 10, 584283.	1.8	36
10	N6-Methyladenosine modification of hepatitis B and C viral RNAs attenuates host innate immunity via RIG-I signaling. Journal of Biological Chemistry, 2020, 295, 13123-13133.	1.6	87
11	A Cell-Based Reporter Assay for Screening Inhibitors of MERS Coronavirus RNA-Dependent RNA Polymerase Activity. Journal of Clinical Medicine, 2020, 9, 2399.	1.0	29
12	An infectious cDNA clone of a growth attenuated Korean isolate of MERS coronavirus KNIH002 in clade B. Emerging Microbes and Infections, 2020, 9, 2714-2726.	3.0	6
13	Interferon-stimulated gene 20 (ISC20) selectively degrades N6-methyladenosine modified Hepatitis B Virus transcripts. PLoS Pathogens, 2020, 16, e1008338.	2.1	90
14	Regulation of La/SSB-dependent viral gene expression by pre-tRNA 3′ trailer-derived tRNA fragments. Nucleic Acids Research, 2019, 47, 9888-9901.	6.5	41
15	Vibrio vulnificus quorum-sensing molecule cyclo(Phe-Pro) inhibits RIG-I-mediated antiviral innate immunity. Nature Communications, 2018, 9, 1606.	5.8	30
16	<i>N6</i> -methyladenosine modification of hepatitis B virus RNA differentially regulates the viral life cycle. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8829-8834.	3.3	164
17	HA1077 displays synergistic activity with daclatasvir against hepatitis C virus and suppresses the emergence of NS5A resistance-associated substitutions in mice. Scientific Reports, 2018, 8, 12469.	1.6	4
18	Hepatitis C Virus Core Protein Promotes miR-122 Destabilization by Inhibiting GLD-2. PLoS Pathogens, 2016, 12, e1005714.	2.1	22

GEON-WOO KIM

#	Article	IF	CITATIONS
19	Identification of a resveratrol tetramer as a potent inhibitor of hepatitis C virus helicase. British Journal of Pharmacology, 2016, 173, 191-211.	2.7	35
20	Inhibition of Hepatitis C Virus in Mice by a Small Interfering RNA Targeting a Highly Conserved Sequence in Viral IRES Pseudoknot. PLoS ONE, 2016, 11, e0146710.	1.1	22
21	Chemical genetics-based discovery of indole derivatives as HCV NS5B polymerase inhibitors. European Journal of Medicinal Chemistry, 2014, 75, 413-425.	2.6	35
22	Phosphorylation of Hepatitis C Virus RNA Polymerases Ser29 and Ser42 by Protein Kinase C-Related Kinase 2 Regulates Viral RNA Replication. Journal of Virology, 2014, 88, 11240-11252.	1.5	20
23	Inhibition of hepatitis C virus replication by Monascus pigment derivatives that interfere with viral RNA polymerase activity and the mevalonate biosynthesis pathway. Journal of Antimicrobial Chemotherapy, 2012, 67, 49-58.	1.3	19
24	Interaction of hepatitis C virus core protein with Hsp60 triggers the production of reactive oxygen species and enhances TNF-α-mediated apoptosis. Cancer Letters, 2009, 279, 230-237.	3.2	55