Jean Marie Vianney Nsanzimana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/738779/publications.pdf

Version: 2024-02-01

759233 996975 2,164 15 12 15 g-index citations h-index papers 15 15 15 3243 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Moistureâ€Induced Nonâ€Equilibrium Phase Segregation in Triple Cation Mixed Halide Perovskite Monitored by ⟨i⟩In Situ⟨/i⟩ Characterization Techniques and Solidâ€State NMR. Energy and Environmental Materials, 2023, 6, .	12.8	7
2	Modulation of Single Atomic Co and Fe Sites on Hollow Carbon Nanospheres as Oxygen Electrodes for Rechargeable Zn–Air Batteries. Small Methods, 2021, 5, e2000751.	8.6	178
3	Highly Efficient Oxygen Reduction Reaction Activity of Nâ€Doped Carbon–Cobalt Boride Heterointerfaces. Advanced Energy Materials, 2021, 11, 2100157.	19.5	190
4	Surface-Modified Hollow Ternary NiCo ₂ P _{<i>x</i>} Catalysts for Efficient Electrochemical Water Splitting and Energy Storage. ACS Applied Materials & Diterfaces, 2019, 11, 39798-39808.	8.0	21
5	Tailoring of Metal Boride Morphology via Anion for Efficient Water Oxidation. Advanced Energy Materials, 2019, 9, 1901503.	19.5	79
6	Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nature Energy, 2019, 4, 329-338.	39.5	977
7	Facile Synthesis of Amorphous Ternary Metal Borides–Reduced Graphene Oxide Hybrid with Superior Oxygen Evolution Activity. ACS Applied Materials & Interfaces, 2019, 11, 846-855.	8.0	67
8	An Earth-Abundant Tungsten–Nickel Alloy Electrocatalyst for Superior Hydrogen Evolution. ACS Applied Nano Materials, 2018, 1, 1228-1235.	5.0	57
9	Lithiation/Delithiation Synthesis of Few Layer Silicene Nanosheets for Rechargeable Li–O ₂ Batteries. Advanced Materials, 2018, 30, e1705523.	21.0	51
10	Synthesis of amorphous boride nanosheets by the chemical reduction of Prussian blue analogs for efficient water electrolysis. Journal of Materials Chemistry A, 2018, 6, 23289-23294.	10.3	73
11	Ultrathin Amorphous Iron–Nickel Boride Nanosheets for Highly Efficient Electrocatalytic Oxygen Production. Chemistry - A European Journal, 2018, 24, 18502-18511.	3.3	82
12	An Efficient and Earthâ∈Abundant Oxygenâ∈Evolving Electrocatalyst Based on Amorphous Metal Borides. Advanced Energy Materials, 2018, 8, 1701475.	19.5	292
13	Selective Electrochemical Reduction of CO ₂ to Ethylene on Nanopores-Modified Copper Electrodes in Aqueous Solution. ACS Applied Materials & Solution and Solution a	8.0	75
14	Effect of preparation conditions on the indium species in fully indium exchanged zeolite LTA. Microporous and Mesoporous Materials, 2016, 225, 564-572.	4.4	3
15	Using the Thallous Ion Exchange Method to Exchange Tin into High Alumina Zeolites. 1. Crystal Structure of Sn ²⁺ _{5.3} Sn ⁴⁺ _{0.8} Cl ^{â€"} _{1.8} [Si ^{1.8 Su^{1.8 Su}}</sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup>	sub>12 <td>ub¹²Al<sub< td=""></sub<></td>	ub ¹² Al <sub< td=""></sub<>