Ichiro Akai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7387761/publications.pdf Version: 2024-02-01

Ιςμιρο Δκλι

#	Article	IF	CITATIONS
1	Intrachain photoluminescence properties of conjugated polymers as revealed by long oligothiophenes and polythiophenes diluted in an inactive solid matrix. Physical Review B, 2006, 73, .	3.2	44
2	Bayesian Hamiltonian Selection in X-ray Photoelectron Spectroscopy. Journal of the Physical Society of Japan, 2019, 88, 034004.	1.6	19
3	Bayesian spectroscopy in solid-state photo-physics. Journal of Physics: Conference Series, 2018, 1036, 012022.	0.4	18
4	Space-Resolved Spectra Due to Highly Mobile Excition at the Stacking Fault in Bil3Crystals. Journal of the Physical Society of Japan, 1989, 58, 969-977.	1.6	13
5	Sparse Modeling of an Extended X-Ray Absorption Fine-Structure Spectrum Based on a Single-Scattering Formalism. Journal of the Physical Society of Japan, 2018, 87, 074003.	1.6	11
6	Spectral Analysis of Xâ€Ray Absorption Near Edge Structure in αâ€Fe 2 O 3 Based on Bayesian Spectroscopy. Physica Status Solidi (B): Basic Research, 2020, 257, 2000107.	1.5	10
7	Bayesian Spectroscopy of Admixed Photoluminescence Spectra with Exciton, Biexciton and Electron Hole Droplet States in a GaAs/AlAs Type-II Superlattice. Journal of Luminescence, 2018, 197, 18-22.	3.1	9
8	Spectral Decomposition of Components Weaker than Noise Intensity by Bayesian Spectroscopy. Journal of the Physical Society of Japan, 2020, 89, 104004.	1.6	9
9	The Photocalorimetric Spectra in Layered Bil3Single Crystals. Journal of the Physical Society of Japan, 1989, 58, 718-725.	1.6	8
10	Bayesian Spectroscopy on Polarization Dependent Photoluminescence Spectra of Doublyâ€Split Excitons in a Cu ₂ 0 Thinâ€Crystal Sandwiched by MgO Substrates. Physica Status Solidi (B): Basic Research, 2018, 255, 1800136.	1.5	7
11	Bayesian Spectroscopy with a Replica Exchange Monte Carlo Method on an Excitonic Absorption Spectrum of a Cu2O Thin Crystal. Journal of Physics: Conference Series, 2019, 1220, 012009.	0.4	5
12	Bayesian spectroscopy of synthesized soft X-ray absorption spectra showing magnetic circular dichroism at the Ni-L ₃ , -L ₂ edges. Science and Technology of Advanced Materials Methods, 2021, 1, 75-86.	1.3	3
13	Replica-Exchange Monte Carlo Method Incorporating Auto-tuning Algorithm Based on Acceptance Ratios for Effective Bayesian Spectroscopy. Journal of the Physical Society of Japan, 2021, 90, 104004.	1.6	3
14	Energy transfer dynamics in wire-type dendrimers having oligophenylene peripheries. Journal of Luminescence, 2008, 128, 948-951.	3.1	2
15	Application of Sparse Modeling to Extended X-ray Absorption Fine Structure Spectra of Transition Metals. Journal of the Physical Society of Japan, 2020, 89, 074602.	1.6	2
16	Bayesian sparse modeling of extended x-ray absorption fine structure to determine interstitial oxygen positions in yttrium oxyhydride epitaxial thin film. AIP Advances, 2021, 11, .	1.3	2
17	Bayesian Spectral Deconvolution of X-Ray Absorption Near Edge Structure Discriminating between High- and Low-Energy Domains. Journal of the Physical Society of Japan, 2022, 91, .	1.6	2
18	Rapid energy transfer process through π*-conjugation network in meta -linked branching dendrimers. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 155-158.	0.8	1

Ιςμιγο Ακαι

#	Article	IF	CITATIONS
19	Photoluminescence spectra of CdTe multi-quantum wells sandwiched by ultrathin MnTe layers and their temperature dependence. Journal of Luminescence, 2016, 169, 665-668.	3.1	1
20	Evaporationâ€Rate and Substrateâ€Temperature Dependence of Direct Exciton Transitions in Bil ₃ Thin Films Formed by Hotâ€Wall Technique on Al ₂ O ₃ Substrates. Physica Status Solidi (B): Basic Research, 2018, 255, 1800092.	1.5	1
21	Phase prediction method for pattern formation in time-dependent Ginzburg-Landau dynamics for kinetic Ising model without <i>a priori</i> assumptions of domain patterns. Physical Review B, 2021, 103, .	3.2	1
22	Performance of Region-Based Markov Random Field with XY Spins. Journal of the Physical Society of Japan, 2021, 90, 044003.	1.6	1
23	Dynamical Processes of High-Density Excitons in GaSe Crystals. Journal of the Physical Society of Japan, 2003, 72, 2646-2655.	1.6	Ο
24	High density excitation effects in excitonic diffusion processes in L _z â€gradient quantum well. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2509-2512.	0.8	0
25	Coherent Phonons in a 1,3,5-Tri-Phenylbenzene Crystal. , 2014, , .		0
26	Inverse estimation of parameters for the magnetic domain via dynamics matching using visual-perceptive similarity. Science and Technology of Advanced Materials Methods, 0, , .	1.3	0