Neil H Davies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7387644/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Blood derived extracellular vesicles as regenerative medicine therapeutics. Biochimie, 2022, 196, 203-215.	1.3	2
2	Determination of Cross-Directional and Cross-Wall Variations of Passive Biaxial Mechanical Properties of Rat Myocardia. Processes, 2022, 10, 629.	1.3	1
3	Analysis of the regenerative capacity of human serum exosomes after a simple multistep separation from lipoproteins. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 63-77.	1.3	7
4	Tendonâ€like tether formation for tongueâ€base advancement in an ovine model using a novel implant device intended for the surgical management of obstructive sleep apnoea. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 1005-1016.	1.6	1
5	In silico stress fibre content affects peak strain in cytoplasm and nucleus but not in the membrane for uniaxial substrate stretch. Medical and Biological Engineering and Computing, 2021, 59, 1933-1944.	1.6	0
6	Progressive Reinvention or Destination Lost? Half a Century of Cardiovascular Tissue Engineering. Frontiers in Cardiovascular Medicine, 2020, 7, 159.	1.1	19
7	Intra-myocardial alginate hydrogel injection acts as a left ventricular mid-wall constraint in swine. Acta Biomaterialia, 2020, 111, 170-180.	4.1	22
8	Tissue Ingrowth Markedly Reduces Mechanical Anisotropy and Stiffness in Fibre Direction of Highly Aligned Electrospun Polyurethane Scaffolds. Cardiovascular Engineering and Technology, 2020, 11, 456-468.	0.7	3
9	Electrospun polyester-urethane scaffold preserves mechanical properties and exhibits strain stiffening during in situ tissue ingrowth and degradation. SN Applied Sciences, 2020, 2, 1.	1.5	4
10	Tuning Tissue Ingrowth into Proangiogenic Hydrogels via Dual Modality Degradation. ACS Biomaterials Science and Engineering, 2019, 5, 5430-5438.	2.6	5
11	A Preliminary Computational Investigation Into the Flow of PEG in Rat Myocardial Tissue for Regenerative Therapy. Frontiers in Cardiovascular Medicine, 2019, 6, 104.	1.1	1
12	Synthetic extracellular matrix mimic hydrogel improves efficacy of mesenchymal stromal cell therapy for ischemic cardiomyopathy. Acta Biomaterialia, 2018, 70, 71-83.	4.1	41
13	Transmural capillary ingrowth is essential for confluent vascular graft healing. Acta Biomaterialia, 2018, 65, 237-247.	4.1	35
14	Effect of intra-myocardial Algisyl-LVRâ,,¢ injectates on fibre structure in porcine heart failure. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 87, 172-179.	1.5	6
15	Cellular mechanosensitivity to substrate stiffness decreases with increasing dissimilarity to cell stiffness. Biomechanics and Modeling in Mechanobiology, 2017, 16, 2063-2075.	1.4	7
16	Improved vascularization of porous scaffolds through growth factor delivery from heparinized polyethylene glycol hydrogels. Acta Biomaterialia, 2017, 49, 89-100.	4.1	33
17	Cast Tube Assay: A 3-D in vitro assay for visualization and quantification of horizontal chemotaxis and cellular invasion. BioTechniques, 2016, 61, 66-72.	0.8	2
18	Excessive volume of hydrogel injectates may compromise the efficacy for the treatment of acute myocardial infarction. International Journal for Numerical Methods in Biomedical Engineering, 2016, 32, e02772.	1.0	10

#	Article	IF	CITATIONS
19	Characterisation of the mechanical properties of infarcted myocardium in the rat under biaxial tension and uniaxial compression. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 63, 252-264.	1.5	33
20	Infarcted rat myocardium: Data from biaxial tensile and uniaxial compressive testing and analysis of collagen fibre orientation. Data in Brief, 2016, 8, 1338-1343.	0.5	3
21	Delivery Modes for Cardiac Stem Cell Therapy. Pancreatic Islet Biology, 2016, , 165-190.	0.1	2
22	Personalised computational cardiology: Patient-specific modelling in cardiac mechanics and biomaterial injection therapies for myocardial infarction. Heart Failure Reviews, 2016, 21, 815-826.	1.7	31
23	Melatonin as a preventive and curative therapy against pulmonaryÂhypertension. Journal of Pineal Research, 2015, 59, 343-353.	3.4	58
24	Regulation of tissue ingrowth into proteolytically degradable hydrogels. Acta Biomaterialia, 2015, 24, 44-52.	4.1	15
25	Micro-structurally detailed model of a therapeutic hydrogel injectate in a rat biventricular cardiac geometry for computational simulations. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18, 325-331.	0.9	10
26	Pharmacodynamic effects of C-domain-specific ACE inhibitors on the renin-angiotensin system in myocardial infarcted rats. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2015, 16, 1149-1158.	1.0	24
27	Coacervate Delivery of Growth Factors Combined with a Degradable Hydrogel Preserves Heart Function after Myocardial Infarction. ACS Biomaterials Science and Engineering, 2015, 1, 753-759.	2.6	35
28	Studying the influence of hydrogel injections into the infarcted left ventricle using the elementâ€free Galerkin method. International Journal for Numerical Methods in Biomedical Engineering, 2014, 30, 416-429.	1.0	17
29	A slow-release fibrin matrix increases adeno-associated virus transduction of wound repair cells inÂvivo. Journal of Biomaterials Applications, 2014, 28, 1408-1418.	1.2	14
30	Proanthocyanidins, anthocyanins and cardiovascular diseases. Food Research International, 2014, 59, 41-52.	2.9	192
31	Pharmacokinetic evaluation of lisinopril-tryptophan, a novel C-domain ACE inhibitor. European Journal of Pharmaceutical Sciences, 2014, 56, 113-119.	1.9	12
32	Computational predictions of improved of wall mechanics and function of the infarcted left ventricle at early and late remodelling stages: comparison of layered and bulk hydrogel injectates. Advances in Biomechanics and Applications, 2014, 1, 41-55.	0.2	9
33	Cell specific ingrowth hydrogels. Biomaterials, 2013, 34, 6797-6803.	5.7	36
34	The effect of hydrogel injection on cardiac function and myocardial mechanics in a computational post-infarction model. Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16, 1185-1195.	0.9	27
35	Outcomes of myocardial infarction hydrogel injection therapy in the human left ventricle dependent on injectate distribution. International Journal for Numerical Methods in Biomedical Engineering, 2013, 29, 870-884.	1.0	20
36	Oncogenic but non-essential role of N-myc downstream regulated gene 1 in the progression of esophageal squamous cell carcinoma. Cancer Biology and Therapy, 2013, 14, 164-174.	1.5	14

#	Article	IF	CITATIONS
37	Covalent incorporation and controlled release of active dexamethasone from injectable polyethylene glycol hydrogels. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1311-1318.	2.1	10
38	A Computational Study of the Injection Therapy for Myocardial Infarction during the Necrotic Stage. , 2013, , .		0
39	Long-Term Left Ventricular Remodelling in Rat Model of Nonreperfused Myocardial Infarction: Sequential MR Imaging Using a 3T Clinical Scanner. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-10.	3.0	16
40	Sustaining Neovascularization of a Scaffold Through Staged Release of Vascular Endothelial Growth Factor-A and Platelet-Derived Growth Factor-BB. Tissue Engineering - Part A, 2012, 18, 26-34.	1.6	42
41	The beneficial effects of deferred delivery on the efficiency of hydrogel therapy post myocardial infarction. Biomaterials, 2012, 33, 2060-2066.	5.7	56
42	Induced chronic hypoxia negates the proâ€angiogenic effect of surface immobilized heparin in a polyurethane porous scaffold. Journal of Biomedical Materials Research - Part A, 2011, 98A, 621-628.	2.1	7
43	Covalent Surface Heparinization Potentiates Porous Polyurethane Scaffold Vascularization. Journal of Biomaterials Applications, 2010, 24, 401-418.	1.2	36
44	Association of Ang-2 with Integrin β2 Controls Ang-2/PDGF-BB-Dependent Upregulation of Human Peripheral Blood Monocyte Fibrinolysis. Inflammation, 2009, 32, 393-401.	1.7	17
45	Rapid three-dimensional quantification of VECF-induced scaffold neovascularisation by microcomputed tomography. Biomaterials, 2009, 30, 5959-5968.	5.7	31
46	A Synthetic Non-degradable Polyethylene Glycol Hydrogel Retards Adverse Post-infarct Left Ventricular Remodeling. Journal of Cardiac Failure, 2009, 15, 629-636.	0.7	137
47	The dosage dependence of VEGF stimulation on scaffold neovascularisation. Biomaterials, 2008, 29, 3531-3538.	5.7	83
48	Ang-2 and PDGF-BB cooperatively stimulate human peripheral blood monocyte fibrinolysis. Journal of Leukocyte Biology, 2007, 81, 1496-1503.	1.5	13
49	Stimulation of Peripheral Blood Monocyte Fibrinolysis by Angâ€₂ and PDGFâ€BB. FASEB Journal, 2006, 20, A711.	0.2	0
50	The selective modulation of endothelial cell mobility on RGD peptide containing surfaces by YIGSR peptides. Biomaterials, 2005, 26, 167-174.	5.7	190
51	Cellâ€demanded release of VEGF from synthetic, biointeractive cellâ€ingrowth matrices for vascularized tissue growth. FASEB Journal, 2003, 17, 2260-2262.	0.2	501
52	Effect of Well Defined Dodecahedral Porosity on Inflammation and Angiogenesis. ASAIO Journal, 2002, 48, 465-471.	0.9	57
53	Cyclic Stretch Induces the Expression of Vascular Endothelial Growth Factor in Vascular Smooth Muscle Cells. Endothelium: Journal of Endothelial Cell Research, 2001, 8, 41-48.	1.7	51
54	Engineering of vascular ingrowth matrices: Are protein domains an alternative to peptides?. The Anatomical Record, 2001, 263, 379-387.	2.3	32

#	Article	IF	CITATIONS
55	Matrix Metalloproteinases and Tissue Valve Degeneration. Journal of Long-Term Effects of Medical Implants, 2001, 11, 10.	0.2	7
56	The activation function 2 domain of hepatic nuclear factor 4 is regulated by a short C-terminal proline-rich repressor domain. Nucleic Acids Research, 1998, 26, 2098-2104.	6.5	25
57	Clotting factor IX levels in C/EBPα knockout mice. British Journal of Haematology, 1997, 99, 578-579.	1.2	11
58	Increased levels of autoantibodies to cardiolipin and oxidised low density lipoprotein are inversely associated with plasma vitamin C status in cigarette smokers. Atherosclerosis, 1996, 124, 75-81.	0.4	47
59	Histone H2B (and H2A) ubiquitination allows normal histone octamer and core particle reconstitution. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1994, 1218, 187-193.	2.4	41
60	Histone-DNA contacts in the 167 bp 2-turn core particle. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1991, 1129, 57-63.	2.4	7
61	Extended C-terminal tail of wheat histone H2A interacts with DNA of the "linker―region. Journal of Molecular Biology, 1991, 218, 805-813.	2.0	50