
Fernando Pastor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7387581/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oligonucleotide-Based Therapies for Renal Diseases. Biomedicines, 2021, 9, 303.	3.2	10
2	IMMU-08. MICROENVIRONMENT MODULATION BY TIM-3 BLOCKADE IMPROVES THE OUTCOME OF PRECLINICAL DIPG MODELS. Neuro-Oncology, 2021, 23, i28-i28.	1.2	0
3	ldiotype vaccines produced with a non-cytopathic alphavirus self-amplifying RNA vector induce antitumor responses in a murine model of B-cell lymphoma. Scientific Reports, 2021, 11, 21427.	3.3	1
4	Aptamers Against Live Targets: Is InÂVivo SELEX Finally Coming to the Edge?. Molecular Therapy - Nucleic Acids, 2020, 21, 192-204.	5.1	71
5	ICOS Costimulation at the Tumor Site in Combination with CTLA-4 Blockade Therapy Elicits Strong Tumor Immunity. Molecular Therapy, 2019, 27, 1878-1891.	8.2	38
6	Decoy-Based, Targeted Inhibition of STAT3: A New Step forward for B Cell Lymphoma Immunotherapy. Molecular Therapy, 2018, 26, 675-677.	8.2	3
7	The aberrant splicing of BAF45d links splicing regulation and transcription in glioblastoma. Neuro-Oncology, 2018, 20, 930-941.	1.2	29
8	Intratumoral injection of activated B lymphoblast in combination with PD-1 blockade induces systemic antitumor immunity with reduction of local and distal tumors. Oncolmmunology, 2018, 7, e1450711.	4.6	3
9	Aptamer-iRNAs as Therapeutics for Cancer Treatment. Pharmaceuticals, 2018, 11, 108.	3.8	37
10	An RNA toolbox for cancer immunotherapy. Nature Reviews Drug Discovery, 2018, 17, 751-767.	46.4	171
11	A phase II trial of autologous dendritic cell vaccination and radiochemotherapy following fluorescence-guided surgery in newly diagnosed glioblastoma patients. Journal of Translational Medicine, 2017, 15, 104.	4.4	100
12	Aptamers as a Promising Therapeutic Tool for Cancer Immunotherapy. , 2017, , .		1
13	Identification of LAG3 high affinity aptamers by HT-SELEX and Conserved Motif Accumulation (CMA). PLoS ONE, 2017, 12, e0185169.	2.5	29
14	Tumor-targeted costimulation by using bi-specific aptamers. Cancer Cell & Microenvironment, 2016, 3, e1333.	0.8	1
15	MRP1-CD28 bi-specific oligonucleotide aptamers: target costimulation to drug-resistant melanoma cancer stem cells. Oncotarget, 2016, 7, 23182-23196.	1.8	58
16	Aptamers: A Feasible Technology in Cancer Immunotherapy. Journal of Immunology Research, 2016, 2016, 1-12.	2.2	26
17	Aptamers: A New Technological Platform in Cancer Immunotherapy. Pharmaceuticals, 2016, 9, 64.	3.8	25
18	In Silico Aptamer Docking Studies: From a Retrospective Validation to a Prospective Case Study'TIM3 Aptamers Binding. Molecular Therapy - Nucleic Acids, 2016, 5, e376.	5.1	40

Fernando Pastor

#	Article	IF	CITATIONS
19	Targeting inhibition of Foxp3 by a CD28 2′-Fluro oligonucleotide aptamer conjugated to P60-peptide enhances active cancer immunotherapy. Biomaterials, 2016, 91, 73-80.	11.4	43
20	Identification of TIM3 2′-fluoro oligonucleotide aptamer by HT-SELEX for cancer immunotherapy. Oncotarget, 2016, 7, 4522-4530.	1.8	44
21	Clinical Safety and Immunogenicity of Tumor-Targeted, Plant-Made Id-KLH Conjugate Vaccines for Follicular Lymphoma. BioMed Research International, 2015, 2015, 1-15.	1.9	53
22	2-fluoro-RNA oligonucleotide CD40 targeted aptamers for the control of B lymphoma and bone-marrow aplasia. Biomaterials, 2015, 67, 274-285.	11.4	63
23	Agonists of Co-stimulation in Cancer Immunotherapy Directed Against CD137, OX40, GITR, CD27, CD28, and ICOS. Seminars in Oncology, 2015, 42, 640-655.	2.2	179
24	Idiotype Vaccine Production Using Hybridoma Technology. Methods in Molecular Biology, 2014, 1139, 367-387.	0.9	4
25	Successful idiotypic vaccination following stem cell allotransplant in lymphoma. Leukemia and Lymphoma, 2013, 54, 881-884.	1.3	3
26	CD28 Aptamers as Powerful Immune Response Modulators. Molecular Therapy - Nucleic Acids, 2013, 2, e98.	5.1	99
27	Use of Oligonucleotide Aptamer Ligands to Modulate the Function of Immune Receptors. Clinical Cancer Research, 2013, 19, 1054-1062.	7.0	68
28	Idiotypic Vaccination: Still a Unique form of Cancer Immunotherapy for Follicular Lymphoma after 20 Years. Advances in Cancer: Research & Treatment, 2013, , 1-13.	0.0	0
29	Dendritic cell vaccination in glioblastoma after fluorescence-guided resection. World Journal of Clinical Oncology, 2012, 3, 142.	2.3	17
30	Idiotype vaccines for lymphoma therapy. Expert Review of Vaccines, 2011, 10, 801-809.	4.4	11
31	Idiotype vaccines for lymphoma: Potential factors predicting the induction of immune responses. World Journal of Clinical Oncology, 2011, 2, 237.	2.3	5
32	Stem Cell Transplant and Idiotypic Vaccination for B-Cell Malignancies. Current Topics in Medicinal Chemistry, 2011, 11, 1653-1660.	2.1	5
33	BiovaxID®: a customized idiotype vaccine for the treatment of B-cell lymphoma. Expert Review of Vaccines, 2011, 10, 1661-1669.	4.4	7
34	Targeting 4-1BB Costimulation to Disseminated Tumor Lesions With Bi-specific Oligonucleotide Aptamers. Molecular Therapy, 2011, 19, 1878-1886.	8.2	115
35	Idiotype Vaccines for Human B-Cell Malignancies. Current Pharmaceutical Design, 2010, 16, 300-307.	1.9	15
36	Induction of tumour immunity by targeted inhibition of nonsense-mediated mRNA decay. Nature, 2010, 465, 227-230.	27.8	231

3

Fernando Pastor

#	Article	IF	Citations
37	Prolonged idiotypic vaccination against follicular lymphoma. Leukemia and Lymphoma, 2009, 50, 47-53.	1.3	21
38	Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice. Journal of Clinical Investigation, 2008, 118, 376-386.	8.2	277
39	Clinical Benefit Associated With Idiotypic Vaccination in Patients With Follicular Lymphoma. Journal of the National Cancer Institute, 2006, 98, 1292-1301.	6.3	155
40	Anti-Inflammatory Cytokines Induce Lipopolysaccharide Tolerance in Human Monocytes Without Modifying Toll-Like Receptor 4 Membrane Expression. Scandinavian Journal of Immunology, 2004, 59, 553-558.	2.7	23
41	Lipopolysaccharide needs soluble CD14 to interact with TLR4 in human monocytes depleted of membrane CD14. Microbes and Infection, 2004, 6, 990-995.	1.9	22
42	Biological Efficacy of a Dendritic Cell-Based Vaccine in a Patient with Metastatic Colorectal Cancer. Journal of Cancer Research Updates, 0, , .	0.3	0
43	Immune-checkpoint blockade aptamers as a feasible clinical alternative to monoclonal antibodies. Cancer Cell & Microenvironment, 0, , .	0.8	Ο