Qing-Hong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7387473/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface Protection and Interface Regulation for Zn Anode via 1â€Hydroxy Ethylideneâ€1,1â€Diphosphonic Acid Electrolyte Additive toward Highâ€Performance Aqueous Batteries. Small, 2022, 18, e2107398.	10.0	22
2	Toward Stable Zinc-Ion Batteries: Use of a Chelate Electrolyte Additive for Uniform Zinc Deposition. ACS Applied Energy Materials, 2022, 5, 4170-4178.	5.1	20
3	Nickel sulfide-based energy storage materials for high-performance electrochemical capacitors. Rare Metals, 2021, 40, 353-373.	7.1	81
4	SnO2 quantum dots modified N-doped carbon as high-performance anode for lithium ion batteries by enhanced pseudocapacitance. Rare Metals, 2021, 40, 48-56.	7.1	51
5	Interface Engineering via Ti3C2Tx MXene Electrolyte Additive toward Dendrite-Free Zinc Deposition. Nano-Micro Letters, 2021, 13, 89.	27.0	130
6	Bio-inspired design of an <i>in situ</i> multifunctional polymeric solid–electrolyte interphase for Zn metal anode cycling at 30 mA cm ^{â^'2} and 30 mA h cm ^{â^'2} . Energy and Environmental Science, 2021, 14, 5947-5957.	30.8	289
7	Nitrogen doped porous carbon as excellent dual anodes for Li- and Na-ion batteries. Chinese Chemical Letters, 2020, 31, 583-588.	9.0	144
8	Dendrite-free Zn anodes enabled by functional nitrogen-doped carbon protective layers for aqueous zinc-ion batteries. Dalton Transactions, 2020, 49, 17629-17634.	3.3	53
9	Rational Design of Unique ZnO/ZnS@N-C Heterostructures for High-Performance Lithium-Ion Batteries. Journal of Physical Chemistry Letters, 2020, 11, 905-912.	4.6	41
10	Unique Flexible NiFe ₂ O ₄ @S/rGO–CNT Electrode via the Synergistic Adsorption/Electrocatalysis Effect toward High-Performance Lithium–Sulfur Batteries. Journal of Physical Chemistry Letters, 2019, 10, 6518-6524.	4.6	32
11	A high-areal-capacity lithium–sulfur cathode achieved by a boron-doped carbon–sulfur aerogel with consecutive core–shell structures. Chemical Communications, 2019, 55, 1084-1087.	4.1	62
12	Dual carbon-modified nickel sulfide composites toward high-performance electrodes for supercapacitors. Inorganic Chemistry Frontiers, 2019, 6, 226-232.	6.0	39
13	Constructing CoO/Co ₃ S ₄ Heterostructures Embedded in Nâ€doped Carbon Frameworks for Highâ€Performance Sodiumâ€lon Batteries. Advanced Functional Materials, 2019, 29, 1901925.	14.9	169
14	Fe2O3/C-modified Si nanoparticles as anode material for high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2019, 795, 284-290.	5.5	43
15	Rational design of Ni/Ni2P heterostructures encapsulated in 3D porous carbon networks for improved lithium storage. Dalton Transactions, 2019, 48, 16000-16007.	3.3	7
16	Reduced Graphene Oxide-Wrapped FeS2 Composite as Anode for High-Performance Sodium-Ion Batteries. Nano-Micro Letters, 2018, 10, 30.	27.0	53
17	Facile Fabrication of Honeycomb-like Carbon Network-Encapsulated Fe/Fe ₃ C/Fe ₃ O ₄ with Enhanced Li-Storage Performance. ACS Applied Materials & Interfaces, 2018, 10, 35994-36001.	8.0	39
18	Hierarchical Carbon@SnS ₂ Aerogel with "Skeleton/Skin―Architectures as a High-Capacity, High-Rate Capability and Long Cycle Life Anode for Sodium Ion Storage. ACS Applied Materials & Interfaces, 2018, 10, 37434-37444.	8.0	48

QING-HONG WANG

#	Article	IF	CITATIONS
19	High Areal Capacitance for Lithium Ion Storage Achieved by a Hierarchical Carbon/MoS ₂ Aerogel with Vertically Aligned Pores. ACS Applied Energy Materials, 2018, 1, 4814-4823.	5.1	21
20	Extraordinary lithium ion storage capability achieved by SnO ₂ nanocrystals with exposed {221} facets. Nanoscale, 2018, 10, 16217-16230.	5.6	55
21	In Situ Construction of 3D Interconnected FeS@Fe ₃ C@Graphitic Carbon Networks for Highâ€Performance Sodiumâ€Ion Batteries. Advanced Functional Materials, 2017, 27, 1703390.	14.9	219
22	Cross-linked porous α-Fe2O3 nanorods as high performance anode materials for lithium ion batteries. RSC Advances, 2016, 6, 97385-97390.	3.6	9
23	General Synthesis of Porous Mixed Metal Oxide Hollow Spheres with Enhanced Supercapacitive Properties. ACS Applied Materials & amp; Interfaces, 2016, 8, 17226-17232.	8.0	80
24	Improved dehydrogenation performance of LiBH4 by 3D hierarchical flower-like MoS2 spheres additives. Journal of Power Sources, 2015, 300, 358-364.	7.8	36
25	Facile fabrication and supercapacitive properties of mesoporous zinc cobaltite microspheres. Journal of Power Sources, 2015, 284, 138-145.	7.8	62
26	Large-scale synthesis of uniform NiCo2O4 nanoparticles with supercapacitive properties. Materials Letters, 2015, 160, 171-174.	2.6	19
27	Facile fabrication of three-dimensional hierarchical CuO nanostructures with enhanced lithium storage capability. RSC Advances, 2015, 5, 68061-68066.	3.6	10
28	Facile synthesis of hierarchical porous ZnCo ₂ O ₄ microspheres for high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 982-985.	10.3	135
29	Facile carbonaceous microsphere templated synthesis of Co3O4 hollow spheres and their electrochemical performance in supercapacitors. Nano Research, 2013, 6, 87-98.	10.4	91
30	Morphology control of CoCO3 crystals and their conversion to mesoporous Co3O4 for alkaline rechargeable batteries application. CrystEngComm, 2013, 15, 6101.	2.6	53
31	Facile preparation and electrochemical properties of hierarchical chrysanthemum-like WO3·0.33H2O. Journal of Materials Chemistry, 2012, 22, 3699.	6.7	70
32	Co3S4 hollow nanospheres grown on graphene as advanced electrode materials for supercapacitors. Journal of Materials Chemistry, 2012, 22, 21387.	6.7	287
33	Chainlike structures assembled by Co hierarchitectures: synthesis and electrochemical properties as negative materials for alkaline secondary batteries. Journal of Materials Chemistry, 2011, 21, 14159.	6.7	16
34	Novel flower-like CoS hierarchitectures: one-pot synthesis and electrochemical properties. Journal of Materials Chemistry, 2011, 21, 327-329.	6.7	144
35	Superior gas-sensing and lithium-storage performance SnO2 nanocrystals synthesized by hydrothermal method. CrystEngComm, 2011, 13, 6077.	2.6	45
36	Facile synthesis and superior supercapacitor performances of three-dimensional cobalt sulfide hierarchitectures. CrystEngComm, 2011, 13, 6960.	2.6	144

#	Article	IF	CITATIONS
37	CoS ₂ Hollow Spheres: Fabrication and Their Application in Lithium-Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 8300-8304.	3.1	282