Sean P Colgan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7387392/publications.pdf

Version: 2024-02-01

182 papers 22,652 citations

9234 74 h-index 146 g-index

184 all docs 184 docs citations

184 times ranked 22520 citing authors

#	Article	IF	CITATIONS
1	Resolvins. Journal of Experimental Medicine, 2002, 196, 1025-1037.	4.2	1,486
2	Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and Intestinal Epithelial HIF Augments Tissue Barrier Function. Cell Host and Microbe, 2015, 17, 662-671.	5.1	1,162
3	Novel Functional Sets of Lipid-Derived Mediators with Antiinflammatory Actions Generated from Omega-3 Fatty Acids via Cyclooxygenase 2–Nonsteroidal Antiinflammatory Drugs and Transcellular Processing. Journal of Experimental Medicine, 2000, 192, 1197-1204.	4.2	1,048
4	Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Research, 2002, 62, 3387-94.	0.4	653
5	Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. Journal of Clinical Investigation, 2002, 110, 993-1002.	3.9	569
6	Crucial Role for Ecto-5′-Nucleotidase (CD73) in Vascular Leakage during Hypoxia. Journal of Experimental Medicine, 2004, 200, 1395-1405.	4.2	484
7	Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. Journal of Clinical Investigation, 2004, 114, 1098-1106.	3.9	484
8	Hypoxia-inducible factor-1 alpha–dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2784-93.	3.3	455
9	Resolvin D1 and Its Aspirin-triggered 17R Epimer. Journal of Biological Chemistry, 2007, 282, 9323-9334.	1.6	452
10	Coordinated Adenine Nucleotide Phosphohydrolysis and Nucleoside Signaling in Posthypoxic Endothelium. Journal of Experimental Medicine, 2003, 198, 783-796.	4.2	444
11	Physiological roles for ecto-5'-nucleotidase (CD73). Purinergic Signalling, 2006, 2, 351-360.	1.1	443
12	Regulation of immunity and inflammation by hypoxia in immunological niches. Nature Reviews Immunology, 2017, 17, 774-785.	10.6	430
13	Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. Journal of Clinical Investigation, 2002, 110, 993-1002.	3.9	429
14	Anti-Inflammatory Actions of Neuroprotectin D1/Protectin D1 and Its Natural Stereoisomers: Assignments of Dihydroxy-Containing Docosatrienes. Journal of Immunology, 2006, 176, 1848-1859.	0.4	424
15	Hypoxia-Inducible Factor 1–Dependent Induction of Intestinal Trefoil Factor Protects Barrier Function during Hypoxia. Journal of Experimental Medicine, 2001, 193, 1027-1034.	4.2	386
16	Hypoxia: an alarm signal during intestinal inflammation. Nature Reviews Gastroenterology and Hepatology, 2010, 7, 281-287.	8.2	376
17	Transmigrating Neutrophils Shape the Mucosal Microenvironment through Localized Oxygen Depletion to Influence Resolution of Inflammation. Immunity, 2014, 40, 66-77.	6.6	373
18	Reduced Inflammation and Tissue Damage in Transgenic Rabbits Overexpressing 15-Lipoxygenase and Endogenous Anti-inflammatory Lipid Mediators. Journal of Immunology, 2003, 171, 6856-6865.	0.4	364

#	Article	IF	Citations
19	Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. Journal of Clinical Investigation, 2004, 114, 1098-1106.	3.9	358
20	Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A Review in the Theme: Cellular Responses to Hypoxia. American Journal of Physiology - Cell Physiology, 2015, 309, C350-C360.	2.1	348
21	Microbial-Derived Butyrate Promotes Epithelial Barrier Function through IL-10 Receptor–Dependent Repression of Claudin-2. Journal of Immunology, 2017, 199, 2976-2984.	0.4	341
22	Mucosal Protection by Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibition. Gastroenterology, 2008, 134, 145-155.	0.6	336
23	Metabolic Shifts in Immunity and Inflammation. Journal of Immunology, 2010, 184, 4062-4068.	0.4	328
24	Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism. Blood, 2004, 104, 3986-3992.	0.6	323
25	ATP Release From Activated Neutrophils Occurs via Connexin 43 and Modulates Adenosine-Dependent Endothelial Cell Function. Circulation Research, 2006, 99, 1100-1108.	2.0	314
26	HIF-1–dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia. Journal of Experimental Medicine, 2005, 202, 1493-1505.	4.2	310
27	Design of Lipoxin A4 Stable Analogs That Block Transmigration and Adhesion of Human Neutrophils. Biochemistry, 1995, 34, 14609-14615.	1.2	309
28	Transepithelial Migration of Neutrophils. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 519-535.	1.4	309
29	HIFâ€dependent induction of adenosine A2B receptor in hypoxia. FASEB Journal, 2006, 20, 2242-2250.	0.2	303
30	Microbiota-Derived Indole Metabolites Promote Human and Murine Intestinal Homeostasis through Regulation of Interleukin-10 Receptor. American Journal of Pathology, 2018, 188, 1183-1194.	1.9	301
31	Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nature Reviews Drug Discovery, 2014, 13, 852-869.	21.5	291
32	Hypoxia and gastrointestinal disease. Journal of Molecular Medicine, 2007, 85, 1295-1300.	1.7	275
33	Lipid mediator-induced expression of bactericidal/ permeability-increasing protein (BPI) in human mucosal epithelia. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3902-3907.	3.3	271
34	Leukocyte adhesion during hypoxia is mediated by HIF-1-dependent induction of Â2 integrin gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10440-10445.	3.3	218
35	Neutrophil-derived 5′-Adenosine Monophosphate Promotes Endothelial Barrier Function via CD73-mediated Conversion to Adenosine and Endothelial A2B Receptor Activation. Journal of Experimental Medicine, 1998, 188, 1433-1443.	4.2	210
36	Central role of Sp1-regulated CD39 in hypoxia/ischemia protection. Blood, 2009, 113, 224-232.	0.6	196

#	Article	IF	CITATIONS
37	Resolvin E1 promotes mucosal surface clearance of neutrophils: a new paradigm for inflammatory resolution. FASEB Journal, 2007, 21, 3162-3170.	0.2	193
38	Autocrine regulation of epithelial permeability by hypoxia: Role for polarized release of tumor necrosis factor \hat{l}_{\pm} . Gastroenterology, 1998, 114, 657-668.	0.6	182
39	Microbiota-derived butyrate dynamically regulates intestinal homeostasis through regulation of actin-associated protein synaptopodin. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11648-11657.	3.3	165
40	Role of vasodilatorâ€stimulated phosphoprotein in protein kinase Aâ€induced changes in endothelial junctional permeability. FASEB Journal, 2002, 16, 583-585.	0.2	164
41	Neutrophil transmigration triggers repair of the lung epithelium via \hat{l}^2 -catenin signaling. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15990-15995.	3.3	162
42	Resolvin E1-induced intestinal alkaline phosphatase promotes resolution of inflammation through LPS detoxification. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14298-14303.	3.3	161
43	HIF-dependent regulation of claudin-1 is central to intestinal epithelial tight junction integrity. Molecular Biology of the Cell, 2015, 26, 2252-2262.	0.9	158
44	Expression and Polarization of Intercellular Adhesion Molecule-1 on Human Intestinal Epithelia: Consequences for CD11b/CD18-Mediated Interactions with Neutrophils. Molecular Medicine, 1996, 2, 489-505.	1.9	153
45	Endothelial catabolism of extracellular adenosine during hypoxia: the role of surface adenosine deaminase and CD26. Blood, 2006, 108, 1602-1610.	0.6	150
46	Contribution of Adenosine A2B Receptors to Inflammatory Parameters of Experimental Colitis. Journal of Immunology, 2009, 182, 4957-4964.	0.4	140
47	Inflammatory Hypoxia: Role of Hypoxia-Inducible Factor. Cell Cycle, 2005, 4, 255-257.	1.3	137
48	Adenosine A _{2A} receptor is a unique angiogenic target of HIF-2α in pulmonary endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10684-10689.	3.3	124
49	Selective induction of mucin-3 by hypoxia in intestinal epithelia. Journal of Cellular Biochemistry, 2006, 99, 1616-1627.	1.2	122
50	Oxygen metabolism and barrier regulation in the intestinal mucosa. Journal of Clinical Investigation, 2016, 126, 3680-3688.	3.9	120
51	Control and dysregulation of redox signalling in the gastrointestinal tract. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 106-120.	8.2	118
52	Interleukin-4 and Interleukin-13 Differentially Regulate Epithelial Chloride Secretion. Journal of Biological Chemistry, 1996, 271, 7460-7464.	1.6	115
53	Lipoxin A4 and Aspirin-Triggered 15-epi-Lipoxin A4 Inhibit Human Neutrophil Migration: Comparisons Between Synthetic 15 Epimers in Chemotaxis and Transmigration with Microvessel Endothelial Cells and Epithelial Cells. Journal of Immunology, 2003, 170, 2688-2694.	0.4	111
54	Adenosine and Hypoxia-Inducible Factor Signaling in Intestinal Injury and Recovery. Annual Review of Physiology, 2012, 74, 153-175.	5.6	111

#	Article	IF	CITATIONS
55	Control of creatine metabolism by HIF is an endogenous mechanism of barrier regulation in colitis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19820-19825.	3.3	111
56	Neutrophils as Sources of Extracellular Nucleotides: Functional Consequences at the Vascular Interface. Trends in Cardiovascular Medicine, 2008, 18, 103-107.	2.3	110
57	Hypoxia and Innate Immunity: Keeping Up with the HIFsters. Annual Review of Immunology, 2020, 38, 341-363.	9.5	105
58	Hypoxia-inducible factors as molecular targets for liver diseases. Journal of Molecular Medicine, 2016, 94, 613-627.	1.7	104
59	Eosinophil-mediated signalling attenuates inflammatory responses in experimental colitis. Gut, 2015, 64, 1236-1247.	6.1	103
60	Hypoxia and Metabolic Factors That Influence Inflammatory Bowel Disease Pathogenesis. Gastroenterology, 2011, 140, 1748-1755.	0.6	102
61	Hypoxanthine is a checkpoint stress metabolite in colonic epithelial energy modulation and barrier function. Journal of Biological Chemistry, 2018, 293, 6039-6051.	1.6	102
62	Hypoxia and Mucosal Inflammation. Annual Review of Pathology: Mechanisms of Disease, 2016, 11, 77-100.	9.6	100
63	CD73 ⁺ regulatory T cells contribute to adenosineâ€mediated resolution of acute lung injury. FASEB Journal, 2013, 27, 2207-2219.	0.2	99
64	An Aspirin-Triggered Lipoxin A4 Stable Analog Displays a Unique Topical Anti-Inflammatory Profile. Journal of Immunology, 2002, 169, 7063-7070.	0.4	94
65	Lipoxin B ₄ regulates human monocyte/neutrophil adherence and motility: design of stable lipoxin B ₄ analogs with increased biologic activity. FASEB Journal, 1998, 12, 487-494.	0.2	92
66	Selective induction of integrin βi by hypoxiaâ€inducible factor: implications for wound healing. FASEB Journal, 2009, 23, 1338-1346.	0.2	90
67	Subversion of Systemic Glucose Metabolism as a Mechanism to Support the Growth of Leukemia Cells. Cancer Cell, 2018, 34, 659-673.e6.	7.7	90
68	Role of VASP in reestablishment of epithelial tight junction assembly after Ca ²⁺ switch. American Journal of Physiology - Cell Physiology, 2002, 282, C1235-C1245.	2.1	88
69	PMNs facilitate translocation of platelets across human and mouse epithelium and together alter fluid homeostasis via epithelial cell–expressed ecto-NTPDases. Journal of Clinical Investigation, 2008, 118, 3682-3692.	3.9	87
70	Critical Role of cAMP Response Element Binding Protein Expression in Hypoxia-elicited Induction of Epithelial Tumor Necrosis Factor-α. Journal of Biological Chemistry, 1999, 274, 19447-19454.	1.6	83
71	Of Microbes and Meals. Nutrition in Clinical Practice, 2012, 27, 215-225.	1.1	83
72	Hypoxia-Inducible Factor Signaling Provides Protection in Clostridium difficile-Induced Intestinal Injury. Gastroenterology, 2010, 139, 259-269.e3.	0.6	81

#	Article	IF	Citations
73	Control of IFN-αA by CD73: Implications for Mucosal Inflammation. Journal of Immunology, 2008, 180, 4246-4255.	0.4	80
74	IFN-γ–Mediated Induction of an Apical IL-10 Receptor on Polarized Intestinal Epithelia. Journal of Immunology, 2014, 192, 1267-1276.	0.4	79
75	Reoxygenation of Hypoxic Human Umbilical Vein Endothelial Cells Activates the Classic Complement Pathway. Circulation, 1997, 96, 326-333.	1.6	79
76	Antiinflammatory adaptation to hypoxia through adenosine-mediated cullin-1 deneddylation. Journal of Clinical Investigation, 2007, 117, 703-711.	3.9	76
77	Antiadhesive Role of Apical Decay-accelerating Factor (CD55) in Human Neutrophil Transmigration across Mucosal Epithelia. Journal of Experimental Medicine, 2003, 198, 999-1010.	4.2	73
78	Inflammatory hypoxia: role of hypoxia-inducible factor. Cell Cycle, 2005, 4, 256-8.	1.3	70
79	HIFâ€dependent induction of apical CD55 coordinates epithelial clearance of neutrophils. FASEB Journal, 2005, 19, 950-959.	0.2	68
80	An Endogenously Anti-Inflammatory Role for Methylation in Mucosal Inflammation Identified through Metabolite Profiling. Journal of Immunology, 2011, 186, 6505-6514.	0.4	59
81	Antimicrobial Aspects of Inflammatory Resolution in the Mucosa: A Role for Proresolving Mediators. Journal of Immunology, 2011, 187, 3475-3481.	0.4	57
82	Epithelial HIF- $1\hat{1}$ ±/claudin-1 axis regulates barrier dysfunction in eosinophilic esophagitis. Journal of Clinical Investigation, 2019, 129, 3224-3235.	3.9	57
83	Epithelial permeability induced by neutrophil transmigration is potentiated by hypoxia: Role of intracellular cAMP. Journal of Cellular Physiology, 1998, 176, 76-84.	2.0	54
84	Targeting the A2B adenosine receptor during gastrointestinal ischemia and inflammation. Expert Opinion on Therapeutic Targets, 2009, 13, 1267-1277.	1.5	51
85	Stabilization of HIF through inhibition of Cullinâ€2 neddylation is protective in mucosal inflammatory responses. FASEB Journal, 2015, 29, 208-215.	0.2	51
86	Cytokine responses and epithelial function in the intestinal mucosa. Cellular and Molecular Life Sciences, 2016, 73, 4203-4212.	2.4	51
87	Identification of vasodilatorâ€stimulated phosphoprotein (VASP) as an HIFâ€regulated tissue permeability factor during hypoxia. FASEB Journal, 2007, 21, 2613-2621.	0.2	50
88	Hypoxiaâ€Inducible Factorâ€2α Reprograms Liver Macrophages to Protect Against Acute Liver Injury Through the Production of Interleukinâ€6. Hepatology, 2020, 71, 2105-2117.	3.6	50
89	Activated fluid transport regulates bacterial-epithelial interactions and significantly shifts the murine colonic microbiome. Gut Microbes, 2012, 3, 250-260.	4.3	49
90	Hypercapnia Suppresses the HIF-dependent Adaptive Response to Hypoxia. Journal of Biological Chemistry, 2016, 291, 11800-11808.	1.6	47

#	Article	IF	CITATIONS
91	Creatine Transporter, Reduced in Colon Tissues From Patients With Inflammatory Bowel Diseases, Regulates Energy Balance in Intestinal Epithelial Cells, Epithelial Integrity, and Barrier Function. Gastroenterology, 2020, 159, 984-998.e1.	0.6	46
92	Hypoxia-induced expression of complement receptor type 1 (CR1, CD35) in human vascular endothelial cells. American Journal of Physiology - Cell Physiology, 1999, 276, C450-C458.	2.1	45
93	Phosphoinositide 3-kinase modulation of β3-integrin represents an endogenous "braking―mechanism during neutrophil transmatrix migration. Blood, 2001, 97, 3251-3258.	0.6	45
94	Central Role for Endothelial Human Deneddylase-1/SENP8 in Fine-Tuning the Vascular Inflammatory Response. Journal of Immunology, 2013, 190, 392-400.	0.4	45
95	Microbiota-Sourced Purines Support Wound Healing and Mucous Barrier Function. IScience, 2020, 23, 101226.	1.9	45
96	Antiâ€inflammatory actions of adrenomedullin through fine tuning of HIF stabilization. FASEB Journal, 2011, 25, 1856-1864.	0.2	44
97	Hypoxia-inducible Factor-dependent Regulation of Platelet-activating Factor Receptor as a Route for Gram-Positive Bacterial Translocation across Epithelia. Molecular Biology of the Cell, 2010, 21, 538-546.	0.9	42
98	Adenosine and gastrointestinal inflammation. Journal of Molecular Medicine, 2013, 91, 157-164.	1.7	41
99	Creatine kinase in ischemic and inflammatory disorders. Clinical and Translational Medicine, 2016, 5, 31.	1.7	40
100	Neutrophils and inflammatory resolution in the mucosa. Seminars in Immunology, 2015, 27, 177-183.	2.7	39
101	Intense Light-Mediated Circadian Cardioprotection via Transcriptional Reprogramming of the Endothelium. Cell Reports, 2019, 28, 1471-1484.e11.	2.9	35
102	The Inflammatory Tissue Microenvironment in IBD. Inflammatory Bowel Diseases, 2013, 19, 2238-2244.	0.9	34
103	Metabolic regulation of intestinal epithelial barrier during inflammation. Tissue Barriers, 2015, 3, e970936.	1.6	34
104	Transcriptional repression of Na-K-2Cl cotransporter NKCC1 by hypoxia-inducible factor-1. American Journal of Physiology - Cell Physiology, 2006, 291, C282-C289.	2.1	33
105	Adenosine Signaling Mediates SUMO-1 Modification of ll®Bl± during Hypoxia and Reoxygenation. Journal of Biological Chemistry, 2009, 284, 13686-13695.	1.6	33
106	Breathless in the Gut: Implications of Luminal O 2 for Microbial Pathogenicity. Cell Host and Microbe, 2016, 19, 427-428.	5.1	32
107	Identification of $Purl_{\pm}$ as a New Hypoxia Response Factor Responsible for Coordinated Induction of the l_{2} Integrin Family. Journal of Immunology, 2007, 179, 1934-1941.	0.4	31
108	Neutrophils as Components of Mucosal Homeostasis. Cellular and Molecular Gastroenterology and Hepatology, 2017, 4, 329-337.	2.3	31

#	Article	IF	Citations
109	Eosinophils attenuate hepatic ischemia-reperfusion injury in mice through ST2-dependent IL-13 production. Science Translational Medicine, 2021, 13, .	5.8	31
110	Microbiota-derived butyrate is an endogenous HIF prolyl hydroxylase inhibitor. Gut Microbes, 2021, 13, 1938380.	4.3	30
111	Epithelial Barrier Regulation by Hypoxia-Inducible Factor. Annals of the American Thoracic Society, 2017, 14, S233-S236.	1.5	29
112	Oral vitamin B ₁₂ supplement is delivered to the distal gut, altering the corrinoid profile and selectively depleting <i>Bacteroides</i> in C57BL/6 mice. Gut Microbes, 2019, 10, 654-662.	4.3	28
113	Dynamic purine signaling and metabolism during neutrophil–endothelial interactions. Purinergic Signalling, 2005, 1, 229-239.	1.1	27
114	Tissue metabolism and host-microbial interactions in the intestinal mucosa. Free Radical Biology and Medicine, 2017, 105, 86-92.	1.3	26
115	IFN- \hat{l}^3 Attenuates Hypoxia-Inducible Factor (HIF) Activity in Intestinal Epithelial Cells through Transcriptional Repression of HIF- $1\hat{l}^2$. Journal of Immunology, 2011, 186, 1790-1798.	0.4	25
116	Neutrophils and inflammatory metabolism in antimicrobial functions of the mucosa. Journal of Leukocyte Biology, 2015, 98, 517-522.	1.5	25
117	Tissue metabolism and the inflammatory bowel diseases. Journal of Molecular Medicine, 2017, 95, 905-913.	1.7	25
118	Perturbation of neddylation-dependent NF-κB responses in the intestinal epithelium drives apoptosis and inhibits resolution of mucosal inflammation. Molecular Biology of the Cell, 2016, 27, 3687-3694.	0.9	22
119	G2A Signaling Dampens Colitic Inflammation via Production of IFN-γ. Journal of Immunology, 2016, 197, 1425-1434.	0.4	22
120	The MUC5B-associated variant rs35705950 resides within an enhancer subject to lineage- and disease-dependent epigenetic remodeling. JCI Insight, 2021, 6, .	2.3	21
121	HIFâ€dependent regulation of AKAP12 (gravin) in the control of human vascular endothelial function. FASEB Journal, 2014, 28, 256-264.	0.2	20
122	Transplantation of an obesity-associated human gut microbiota to mice induces vascular dysfunction and glucose intolerance. Gut Microbes, 2021, 13, 1940791.	4.3	20
123	Implications of Protein Post-Translational Modifications in IBD. Inflammatory Bowel Diseases, 2012, 18, 1378-1388.	0.9	18
124	Neutrophils and the inflammatory tissue microenvironment in the mucosa. Immunological Reviews, 2016, 273, 112-120.	2.8	17
125	Special pro-resolving mediator (SPM) actions in regulating gastro-intestinal inflammation and gut mucosal immune responses. Molecular Aspects of Medicine, 2017, 58, 93-101.	2.7	17
126	Intestinal Epithelial Ecto-5′-Nucleotidase (CD73) Regulates Intestinal Colonization and Infection by Nontyphoidal Salmonella. Infection and Immunity, 2017, 85, .	1.0	17

#	Article	IF	CITATIONS
127	Adaptation to inflammatory acidity through neutrophil-derived adenosine regulation of SLC26A3. Mucosal Immunology, 2020, 13, 230-244.	2.7	17
128	Microbialâ€derived indoles inhibit neutrophil myeloperoxidase to diminish bystander tissue damage. FASEB Journal, 2021, 35, e21552.	0.2	17
129	Contributions of neutrophils to resolution of mucosal inflammation. Immunologic Research, 2013, 55, 75-82.	1.3	16
130	The HIF target ATG9A is essential for epithelial barrier function and tight junction biogenesis. Molecular Biology of the Cell, 2020, 31, 2249-2258.	0.9	16
131	Bile acids modulate colonic MAdCAM-1 expression in a murine model of combined cholestasis and colitis. Mucosal Immunology, 2021, 14, 479-490.	2.7	16
132	The multiple roles of major histocompatibility complex class-I-like molecules in mucosal immune function. Acta Odontologica Scandinavica, 2001, 59, 139-144.	0.9	15
133	Neutrophils as sources of dinucleotide polyphosphates and metabolism by epithelial ENPP1 to influence barrier function via adenosine signaling. Molecular Biology of the Cell, 2018, 29, 2687-2699.	0.9	15
134	Creatine Supplementation for Patients with Inflammatory Bowel Diseases: A Scientific Rationale for a Clinical Trial. Nutrients, 2021, 13, 1429.	1.7	15
135	Microbial Metabolite Regulation of Epithelial Cell-Cell Interactions and Barrier Function. Cells, 2022, 11, 944.	1.8	15
136	Lipid mediator networks and leukocyte transmigration. Prostaglandins Leukotrienes and Essential Fatty Acids, 2005, 73, 197-202.	1.0	14
137	Platelet activating factor receptor acts to limit colitisâ€induced liver inflammation. FASEB Journal, 2020, 34, 7718-7732.	0.2	14
138	Adenosine Awakens Metabolism to Enhance Growth-Independent Killing of Tolerant and Persister Bacteria across Multiple Classes of Antibiotics. MBio, 2022, 13, e0048022.	1.8	14
139	Cholestatic liver disease results increased production of reactive aldehydes and an atypical periportal hepatic antioxidant response. Free Radical Biology and Medicine, 2019, 143, 101-114.	1.3	13
140	Intestinal Inflammation as a Dysbiosis of Energy Procurement: New Insights into an Old Topic. Gut Microbes, 2021, 13, 1-20.	4.3	13
141	Targeting hypoxia in inflammatory bowel disease. Journal of Investigative Medicine, 2016, 64, 364-368.	0.7	12
142	Metabolic Host–Microbiota Interactions in Autophagy and the Pathogenesis of Inflammatory Bowel Disease (IBD). Pharmaceuticals, 2021, 14, 708.	1.7	12
143	A Central Role for Heme Oxygenase-1 in the Control of Intestinal Epithelial Chemokine Expression. Journal of Innate Immunity, 2018, 10, 228-238.	1.8	11
144	Mucosal acidosis elicits a unique molecular signature in epithelia and intestinal tissue mediated by GPR31-induced CREB phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11

#	Article	IF	CITATIONS
145	Intestinal heat shock protein 110 regulates expression of CD1d on intestinal epithelial cells. Journal of Clinical Investigation, 2003, 112, 745-754.	3.9	11
146	Oxygen metabolism and innate immune responses in the gut. Journal of Applied Physiology, 2017, 123, 1321-1327.	1.2	9
147	Novel therapeutic concepts for inflammatory bowel diseaseâ€"from bench to bedside. Journal of Molecular Medicine, 2017, 95, 899-903.	1.7	7
148	Targeting Hypoxia to Augment Mucosal Barrier Function. Journal of Epithelial Biology & Pharmacology, 2012, 5, 67-76.	1.2	7
149	Swimming Through the Gut: Implications of Fluid Transport on the Microbiome. Digestive Diseases and Sciences, 2013, 58, 602-603.	1.1	6
150	Actions of Adenosine on Cullin Neddylation: Implications for Inflammatory Responses. Computational and Structural Biotechnology Journal, 2015, 13, 273-276.	1.9	6
151	Resolvins resolve to heal mucosal wounds. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10621-10622.	3.3	4
152	All Control of the	1.9	4
153	Endothelial COX-2 induction by hypoxia liberates 6-keto-PGF1 \hat{l}_{\pm} , a potent epithelial Secretagogue. Advances in Experimental Medicine and Biology, 2002, 507, 107-112.	0.8	4
154	Disruption of monocyte-macrophage differentiation and trafficking by a heme analog during active inflammation. Mucosal Immunology, 2022, 15, 244-256.	2.7	3
155	Neutrophil–Endothelial Cell Interactions. , 0, , 141-152.		1
156	HIF2 keeps paces in tight hypoxic spaces. Blood, 2021, 137, 3323-3324.	0.6	1
157	Microbial Indole Metabolites Provide a Novel Pathway for Regulation of Intestinal Homeostasis. FASEB Journal, 2019, 33, 34.9.	0.2	1
158	The Influence of Neddylation on the Mucosal Inflammatory Response. FASEB Journal, 2015, 29, 142.9.	0.2	1
159	Contact-dependent, polarized acidification response during neutrophil–epithelial interactions. Journal of Leukocyte Biology, 2022, 112, 1543-1553.	1.5	1
160	â€Transcriptional Imprinting' of colonic epithelia by transmigrating neutrophils reveals a central role for hypoxic signaling via local oxygen depletion. Inflammatory Bowel Diseases, 2011, 17, S72.	0.9	0
161	Intestinal epithelial innate immunity: A role for Hypoxia-mediated autophagy. Inflammatory Bowel Diseases, 2011, 17, S74.	0.9	0
162	Insights into the impact of inflammatory acidification on the mucosa. FASEB Journal, 2021, 35, .	0.2	0

#	Article	IF	CITATIONS
163	Microbiotaâ€derived butyrate is an endogenous inhibitor of HIF prolylâ€hydroxylases. FASEB Journal, 2021, 35, .	0.2	0
164	Lung neutrophils on a paleo diet: lean, mean inflammatory machines. Journal of Clinical Investigation, 2021, 131, .	3.9	0
165	In vitro Monitoring of Extracellular pH in Real-Time. Journal of Visualized Experiments, 2021, , .	0.2	O
166	HIFâ€dependent Repression of Naâ€Kâ€2Cl―Coâ€transporter (NKCC1) in Hypoxia. FASEB Journal, 2006, 20, A10) 9 042	0
167	Resolvin E1 promotes mucosal surface clearance of neutrophils: a new paradigm for inflammatory resolution. FASEB Journal, 2007, 21, A131.	0.2	O
168	Identification of molecular antiâ€inflammatory mechanisms of adenosine: Cullinâ€i deneddylation during hypoxic preconditioning (HPC). FASEB Journal, 2007, 21, A131.	0.2	0
169	Mucosal protection by hypoxiaâ€inducible factor (HIF) prolyl hydroxylase inhibition. FASEB Journal, 2008, 22, 328.3.	0.2	O
170	Interferonâ€gamma inhibits hypoxiaâ€inducible factor (HIF) in intestinal epithelial cells through transcriptional repression of HIFâ€1 beta. FASEB Journal, 2009, 23, 570.12.	0.2	0
171	Neutrophilâ€epithelial interactions modulate the inflammatory microenvironment during colitis. FASEB Journal, 2013, 27, 137.1.	0.2	0
172	Fundamental role for HIFâ€1α in expression of enteric human β defensinâ€1. FASEB Journal, 2013, 27, 131.7.	0.2	0
173	IFNâ€Î³â€mediated Induction of an Apical ILâ€10 Receptor on Polarized Intestinal Epithelia. FASEB Journal, 2013, 27, 137.11.	0.2	0
174	Signaling Through the Aryl Hydrocarbon Receptor Induces Expression of the ILâ€10 Receptor on Intestinal Epithelia. FASEB Journal, 2015, 29, 142.11.	0.2	0
175	Microbeâ€Host Crosstalk between Shortâ€Chain Fatty Acids and Intestinal Epithelial HIF Provides a New Mechanism to Augment Tissue Barrier Function. FASEB Journal, 2015, 29, 282.6.	0.2	O
176	Intestinal epithelial ectoâ€5′â€nucleotidase CD73 regulates the homeostasis of Salmonella typhimurium and commensal bacteria. FASEB Journal, 2015, 29, 507.8.	0.2	0
177	Microbiotaâ€Derived Indole Metabolites Provide a Novel Pathway for Regulation of Intestinal Homeostasis. FASEB Journal, 2018, 32, 286.8.	0.2	O
178	Adenosine controls tissue fluid and pH homeostasis through transcriptional regulation of SLC26A3. FASEB Journal, 2019, 33, 34.8.	0.2	0
179	Dynamic regulation of actinâ€binding protein synaptopodin by butyrate promotes intestinal epithelial barrier function. FASEB Journal, 2020, 34, 1-1.	0.2	O
180	Bile Acids Modulate Colonic MAdCAMâ€1 Expression in a Murine Model of PSCâ€1BD. FASEB Journal, 2020, 34, 1-1.	0.2	0

#	Article	IF	CITATIONS
181	Butyrate Analogues Mimicking Hypoxia by the Chemical Stabilization of Hypoxia Inducible Factor (HIF). FASEB Journal, 2022, 36, .	0.2	О
182	Acidosis regulation of epithelial barrier function and immune signaling. FASEB Journal, 2022, 36, .	0.2	0