

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7386146/publications.pdf Version: 2024-02-01

LIAN LIN

#	Article	IF	CITATIONS
1	Superhydrophobic and Superoleophilic PVDF Membranes for Effective Separation of Waterâ€inâ€Oil Emulsions with High Flux. Advanced Materials, 2013, 25, 2071-2076.	11.1	1,015
2	Nanowireâ€Haired Inorganic Membranes with Superhydrophilicity and Underwater Ultralow Adhesive Superoleophobicity for Highâ€Efficiency Oil/Water Separation. Advanced Materials, 2013, 25, 4192-4198.	11.1	784
3	Saltâ€Induced Fabrication of Superhydrophilic and Underwater Superoleophobic PAAâ€gâ€PVDF Membranes for Effective Separation of Oilâ€Inâ€Water Emulsions. Angewandte Chemie - International Edition, 2014, 53, 856-860.	7.2	673
4	Recent progress in developing advanced membranes for emulsified oil/water separation. NPG Asia Materials, 2014, 6, e101-e101.	3.8	584
5	Ultrafast Separation of Emulsified Oil/Water Mixtures by Ultrathin Freeâ€Standing Singleâ€Walled Carbon Nanotube Network Films. Advanced Materials, 2013, 25, 2422-2427.	11.1	527
6	Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination. Nature Communications, 2018, 9, 2004.	5.8	457
7	Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 à precision separation. Nature Communications, 2020, 11, 2015.	5.8	398
8	Zwitterionic Nanohydrogel Grafted PVDF Membranes with Comprehensive Antifouling Property and Superior Cycle Stability for Oilâ€inâ€Water Emulsion Separation. Advanced Functional Materials, 2018, 28, 1804121.	7.8	379
9	A Robust Polyionized Hydrogel with an Unprecedented Underwater Antiâ€Crudeâ€Oilâ€Adhesion Property. Advanced Materials, 2016, 28, 5307-5314.	11.1	346
10	Photoinduced Superwetting Single-Walled Carbon Nanotube/TiO ₂ Ultrathin Network Films for Ultrafast Separation of Oil-in-Water Emulsions. ACS Nano, 2014, 8, 6344-6352.	7.3	344
11	Interfacial Design of Mixed Matrix Membranes for Improved Gas Separation Performance. Advanced Materials, 2016, 28, 3399-3405.	11.1	337
12	A novel zwitterionic polyelectrolyte grafted PVDF membrane for thoroughly separating oil from water with ultrahigh efficiency. Journal of Materials Chemistry A, 2013, 1, 5758.	5.2	330
13	Cupric Phosphate Nanosheets-Wrapped Inorganic Membranes with Superhydrophilic and Outstanding Anticrude Oil-Fouling Property for Oil/Water Separation. ACS Nano, 2018, 12, 795-803.	7.3	317
14	Ultrafast permeation of water through protein-based membranes. Nature Nanotechnology, 2009, 4, 353-357.	15.6	312
15	Singleâ€Walled Carbon Nanotube Film Supported Nanofiltration Membrane with a Nearly 10 nm Thick Polyamide Selective Layer for Highâ€Flux and Highâ€Rejection Desalination. Small, 2016, 12, 5034-5041.	5.2	298
16	Layered assembly of graphene oxide and Co–Al layered double hydroxide nanosheets as electrode materials for supercapacitors. Chemical Communications, 2011, 47, 3556.	2.2	284
17	Layered α 0(OH) ₂ Nanocones as Electrode Materials for Pseudocapacitors: Understanding the Effect of Interlayer Space on Electrochemical Activity. Advanced Functional Materials, 2013, 23, 2758-2764.	7.8	284
18	Interface Chemistry Engineering for Stable Cycling of Reduced GO/SnO ₂ Nanocomposites for Lithium Ion Battery. Nano Letters, 2013, 13, 1711-1716.	4.5	278

#	Article	IF	CITATIONS
19	Ultrathin Polyamide Nanofiltration Membrane Fabricated on Brush-Painted Single-Walled Carbon Nanotube Network Support for Ion Sieving. ACS Nano, 2019, 13, 5278-5290.	7.3	268
20	Layerâ€byâ€Layer Construction of Cu ²⁺ /Alginate Multilayer Modified Ultrafiltration Membrane with Bioinspired Superwetting Property for Highâ€Efficient Crudeâ€Oilâ€inâ€Water Emulsion Separation. Advanced Functional Materials, 2018, 28, 1801944.	7.8	256
21	Photothermal-Responsive Single-Walled Carbon Nanotube-Based Ultrathin Membranes for On/Off Switchable Separation of Oil-in-Water Nanoemulsions. ACS Nano, 2015, 9, 4835-4842.	7.3	247
22	Superhydrophilic In-Situ-Cross-Linked Zwitterionic Polyelectrolyte/PVDF-Blend Membrane for Highly Efficient Oil/Water Emulsion Separation. ACS Applied Materials & Interfaces, 2017, 9, 9603-9613.	4.0	238
23	Bio-inspired surface-functionalization of graphene oxide for the adsorption of organic dyes and heavy metal ions with a superhigh capacity. Journal of Materials Chemistry A, 2014, 2, 5034-5040.	5.2	234
24	Novel Janus Membrane for Membrane Distillation with Simultaneous Fouling and Wetting Resistance. Environmental Science & Technology, 2017, 51, 13304-13310.	4.6	227
25	SWCNT-intercalated GO ultrathin films for ultrafast separation of molecules. Journal of Materials Chemistry A, 2015, 3, 6649-6654.	5.2	223
26	Layer-by-Layer Engineered Co–Al Hydroxide Nanosheets/Graphene Multilayer Films as Flexible Electrode for Supercapacitor. Langmuir, 2012, 28, 293-298.	1.6	198
27	Tröger's Base-Based Microporous Polyimide Membranes for High-Performance Gas Separation. ACS Macro Letters, 2014, 3, 597-601.	2.3	170
28	Sol–gel preparation of PAA-g-PVDF/TiO2 nanocomposite hollow fiber membranes with extremely high water flux and improved antifouling property. Journal of Membrane Science, 2013, 432, 25-32.	4.1	167
29	Self-Assembly of Uniform Spherical Aggregates of Magnetic Nanoparticles through π-π Interactions. Angewandte Chemie - International Edition, 2001, 40, 2135-2138.	7.2	165
30	Phase Transformation Guided Single-Layer β-Co(OH) ₂ Nanosheets for Pseudocapacitive Electrodes. ACS Nano, 2014, 8, 3724-3734.	7.3	154
31	Alkaline-induced superhydrophilic/underwater superoleophobic polyacrylonitrile membranes with ultralow oil-adhesion for high-efficient oil/water separation. Journal of Membrane Science, 2016, 513, 67-73.	4.1	154
32	An ultrathin bilayer membrane with asymmetric wettability for pressure responsive oil/water emulsion separation. Journal of Materials Chemistry A, 2015, 3, 23477-23482.	5.2	146
33	Optimizing the Volmer Step by Single-Layer Nickel Hydroxide Nanosheets in Hydrogen Evolution Reaction of Platinum. ACS Catalysis, 2015, 5, 3801-3806.	5.5	142
34	Superwetting polymer-decorated SWCNT composite ultrathin films for ultrafast separation of oil-in-water nanoemulsions. Journal of Materials Chemistry A, 2015, 3, 2895-2902.	5.2	140
35	Microporous Polyimides with Rationally Designed Chain Structure Achieving High Performance for Gas Separation. Macromolecules, 2014, 47, 7477-7483.	2.2	131
36	Ultrathin membranes of single-layered MoS ₂ nanosheets for high-permeance hydrogen separation. Nanoscale, 2015, 7, 17649-17652.	2.8	130

#	Article	IF	CITATIONS
37	A few-layered Ti ₃ C ₂ nanosheet/glass fiber composite separator as a lithium polysulphide reservoir for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 5993-5998.	5.2	130
38	Doubleâ€Defense Design of Superâ€Antiâ€Fouling Membranes for Oil/Water Emulsion Separation. Advanced Functional Materials, 2022, 32, .	7.8	129
39	Polymers of intrinsic microporosity/metal–organic framework hybrid membranes with improved interfacial interaction for high-performance CO ₂ separation. Journal of Materials Chemistry A, 2017, 5, 10968-10977.	5.2	127
40	Interface Chemistry Guided Long-Cycle-Life Li–S Battery. Nano Letters, 2013, 13, 4206-4211.	4.5	125
41	Tailoring surface charge and wetting property for robust oil-fouling mitigation in membrane distillation. Journal of Membrane Science, 2016, 516, 113-122.	4.1	119
42	Platinum-nickel hydroxide nanocomposites for electrocatalytic reduction of water. Nano Energy, 2017, 31, 456-461.	8.2	119
43	A Comparative Study of Composition and Morphology Effect of Ni _{<i>x</i>} Co _{1–<i>x</i>} (OH) ₂ on Oxygen Evolution/Reduction Reaction. ACS Applied Materials & Interfaces, 2014, 6, 10172-10180.	4.0	118
44	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	3.2	117
45	General Method for Ultrathin Free-Standing Films of Nanofibrous Composite Materials. Journal of the American Chemical Society, 2007, 129, 8625-8633.	6.6	115
46	Thickness-Controlled Synthesis of Ultrathin Au Sheets and Surface Plasmonic Property. Journal of the American Chemical Society, 2013, 135, 12544-12547.	6.6	106
47	Tröger's base-based copolymers with intrinsic microporosity for CO ₂ separation and effect of Tröger's base on separation performance. Polymer Chemistry, 2014, 5, 2793-2800.	1.9	106
48	Covalent Bond Glued Sulfur Nanosheet-Based Cathode Integration for Long-Cycle-Life Li–S Batteries. Nano Letters, 2013, 13, 6244-6250.	4.5	99
49	Novel polymer-free iridescent lamellar hydrogel for two-dimensional confined growth of ultrathin gold membranes. Nature Communications, 2014, 5, 3313.	5.8	95
50	Thin-film nanocomposite nanofiltration membrane with an ultrathin polyamide/UIO-66-NH2 active layer for high-performance desalination. Journal of Membrane Science, 2020, 600, 117874.	4.1	89
51	Hydrogel-embedded tight ultrafiltration membrane with superior anti-dye-fouling property for low-pressure driven molecule separation. Journal of Materials Chemistry A, 2018, 6, 2927-2934.	5.2	80
52	<i>In situ</i> growth of single-layered α-Ni(OH) ₂ nanosheets on a carbon cloth for highly efficient electrocatalytic oxidation of urea. Journal of Materials Chemistry A, 2018, 6, 13867-13873.	5.2	80
53	Porous superstructures constructed from ultrafine FeP nanoparticles for highly active and exceptionally stable hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 6387-6392.	5.2	79
54	MOF Nanosheet-Based Mixed Matrix Membranes with Metal–Organic Coordination Interfacial Interaction for Gas Separation. ACS Applied Materials & Interfaces, 2020, 12, 49101-49110.	4.0	78

#	Article	IF	CITATIONS
55	Carbon Molecular Sieve Membranes Derived from Tröger's Baseâ€Based Microporous Polyimide for Gas Separation. ChemSusChem, 2018, 11, 916-923.	3.6	74
56	pH-Induced non-fouling membrane for effective separation of oil-in-water emulsion. Journal of Membrane Science, 2015, 477, 131-138.	4.1	72
57	Formation of Positively Charged Copper Hydroxide Nanostrands and Their Structural Characterization. Chemistry of Materials, 2006, 18, 1795-1802.	3.2	66
58	Bio-inspired vertically aligned polyaniline nanofiber layers enabling extremely high-efficiency solar membrane distillation for water purification. Journal of Materials Chemistry A, 2021, 9, 10678-10684.	5.2	66
59	Microsphere-Fiber Interpenetrated Superhydrophobic PVDF Microporous Membranes with Improved Waterproof and Breathable Performance. ACS Applied Materials & Interfaces, 2018, 10, 28210-28218.	4.0	65
60	Polyamide nanofiltration membrane with high mono/divalent salt selectivity via pre-diffusion interfacial polymerization. Journal of Membrane Science, 2021, 636, 119478.	4.1	62
61	Plating Precious Metals on Nonprecious Metal Nanoparticles for Sustainable Electrocatalysts. Nano Letters, 2017, 17, 3391-3395.	4.5	61
62	Ultrathin microporous membrane with high oil intrusion pressure for effective oil/water separation. Journal of Membrane Science, 2020, 608, 118201.	4.1	59
63	Metal–Organic Framework Composite Photothermal Membrane for Removal of High-Concentration Volatile Organic Compounds from Water via Molecular Sieving. ACS Nano, 2022, 16, 8329-8337.	7.3	58
64	Boosting Alkaline Hydrogen Evolution Activity with Niâ€Doped MoS ₂ /Reduced Graphene Oxide Hybrid Aerogel. ChemSusChem, 2019, 12, 457-466.	3.6	56
65	Zwitterionic Nanofibrous Membranes with a Superior Antifouling Property for Gravity-Driven Crude Oil-in-Water Emulsion Separation. Langmuir, 2019, 35, 1682-1689.	1.6	56
66	Cupric phosphate mineralized polymer membrane with superior cycle stability for oil/water emulsion separation. Journal of Membrane Science, 2020, 612, 118427.	4.1	56
67	Surfactant-assisted fabrication of free-standing inorganic sheets covering an array of micrometre-sized holes. Nature Materials, 2007, 6, 686-691.	13.3	55
68	Fabrication of Superstrong Ultrathin Free-Standing Single-Walled Carbon Nanotube Films via a Wet Process. Advanced Functional Materials, 2011, 21, 4358-4363.	7.8	53
69	Two-dimensional fractal nanocrystals templating for substantial performance enhancement of polyamide nanofiltration membrane. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	52
70	A Novel Architecture for Carbon Nanotube Membranes towards Fast and Efficient Oil/water Separation. Scientific Reports, 2018, 8, 7418.	1.6	50
71	Time-dependent growth of zinc hydroxide nanostrands and their crystal structure. Chemical Communications, 2008, , 1904.	2.2	49
72	Spontaneous Growth of Free-Standing Polypyrrole Films at an Air/Ionic Liquid Interface. Langmuir, 2010, 26, 14405-14408.	1.6	48

#	Article	IF	CITATIONS
73	Constructing Strong Interfacial Interactions under Mild Conditions in MOF-Incorporated Mixed Matrix Membranes for Gas Separation. ACS Applied Materials & Interfaces, 2021, 13, 3166-3174.	4.0	48
74	Rh nanoparticles supported on ultrathin carbon nanosheets for high-performance oxygen reduction reaction and catalytic hydrogenation. Nanoscale, 2017, 9, 1834-1839.	2.8	47
75	Mixed matrix membranes with highly dispersed MOF nanoparticles for improved gas separation. Separation and Purification Technology, 2021, 277, 119449.	3.9	47
76	Ultrafast Ion Sieving from Honeycomb-like Polyamide Membranes Formed Using Porous Protein Assemblies. Nano Letters, 2020, 20, 5821-5829.	4.5	46
77	Monoglyceride-Based Organogelator for Broad-Range Oil Uptake with High Capacity. Langmuir, 2015, 31, 1670-1674.	1.6	45
78	Ultralarge Single-Layer Porous Protein Nanosheet for Precise Nanosize Separation. Nano Letters, 2018, 18, 6563-6569.	4.5	44
79	Nanostructured Three-Dimensional Percolative Channels for Separation of Oil-in-Water Emulsions. IScience, 2018, 6, 289-298.	1.9	44
80	Thermoresponsive Ultrathin Membranes with Precisely Tuned Nanopores for High-Flux Separation. ACS Applied Materials & Interfaces, 2016, 8, 13607-13614.	4.0	40
81	Nanoporous film-mediated growth of ultrathin and continuous metal–organic framework membranes for high-performance hydrogen separation. Journal of Materials Chemistry A, 2017, 5, 1962-1966.	5.2	39
82	Design of interchain hydrogen bond in polyimide membrane for improved gas selectivity and membrane stability. Journal of Membrane Science, 2021, 618, 118659.	4.1	39
83	Ultrathin Membranes: A New Opportunity for Ultrafast and Efficient Separation. Advanced Materials Technologies, 2020, 5, 1901069.	3.0	37
84	Interface Chemistry Engineering of Proteinâ€Đirected SnO ₂ Nanocrystalâ€Based Anode for Lithiumâ€Ion Batteries with Improved Performance. Small, 2014, 10, 998-1007.	5.2	35
85	High-performance polyamide nanofiltration membrane with arch-bridge structure on a highly hydrated cellulose nanofiber support. Science China Materials, 2020, 63, 2570-2581.	3.5	35
86	Effects on Carbon Molecular Sieve Membrane Properties for a Precursor Polyimide with Simultaneous Flatness and Contortion in the Repeat Unit. ChemSusChem, 2020, 13, 5531-5538.	3.6	34
87	A high performance three-phase enzyme electrode based on superhydrophobic mesoporous silicon nanowire arrays for glucose detection. Nanoscale, 2016, 8, 7391-7395.	2.8	32
88	Polyamide Thin Films Grown on PD/SWCNT-Interlayered-PTFE Microfiltration Membranes for High-Permeance Organic Solvent Nanofiltration. Industrial & Engineering Chemistry Research, 2020, 59, 22533-22540.	1.8	31
89	A Single-Walled Carbon Nanotube/Covalent Organic Framework Nanocomposite Ultrathin Membrane with High Organic Solvent Resistance for Molecule Separation. ACS Applied Materials & Interfaces, 2020, 12, 53096-53103.	4.0	30
90	Single-layered GO/LDH hybrid nanoporous membranes with improved stability for salt and organic molecules rejection. Journal of Membrane Science, 2020, 607, 118184.	4.1	30

#	Article	IF	CITATIONS
91	Microporous polymer adsorptive membranes with high processing capacity for molecular separation. Nature Communications, 2022, 13, .	5.8	30
92	Adamantane-grafted polymer of intrinsic microporosity with finely tuned interchain spacing for improved CO2 separation performance. Separation and Purification Technology, 2020, 233, 116008.	3.9	27
93	Micro/nano hierarchical poly(acrylic acid)-grafted-poly(vinylidene fluoride) layer coated foam membrane for temperature-controlled separation of heavy oil/water. Separation and Purification Technology, 2015, 156, 207-214.	3.9	26
94	Unique lift-off of droplet impact on high temperature nanotube surfaces. Applied Physics Letters, 2017, 111, .	1.5	26
95	Bioinspired membranes for multi-phase liquid and molecule separation. Science China Chemistry, 2019, 62, 14-23.	4.2	25
96	Twoâ€Dimensional Microporous Materialâ€based Mixed Matrix Membranes for Gas Separation. Chemistry - an Asian Journal, 2020, 15, 2303-2315.	1.7	24
97	Metal ion cross-linked nanoporous polymeric membranes with improved organic solvent resistance for molecular separation. Journal of Membrane Science, 2021, 621, 119002.	4.1	24
98	Synergistic Design of Enhanced π–π Interaction and Decarboxylation Cross-Linking of Polyimide Membranes for Natural Gas Separation. Macromolecules, 2022, 55, 2970-2982.	2.2	24
99	Dried Foam Films: Self-Standing, Water-Free, Reversed Bilayers of Amphiphilic Compounds. Angewandte Chemie - International Edition, 2005, 44, 4532-4535.	7.2	23
100	Polyamide Nanofiltration Membranes from Emulsion-Mediated Interfacial Polymerization. ACS ES&T Engineering, 2021, 1, 533-542.	3.7	23
101	Thin-film composite nanofiltration membrane with unprecedented stability in strong acid for highly selective dye/NaCl separation. Journal of Membrane Science, 2022, 645, 120189.	4.1	23
102	Advancement in liquid exfoliation of graphite through simultaneously oxidizing and ultrasonicating. Journal of Materials Chemistry A, 2014, 2, 20382-20392.	5.2	22
103	Mineralized growth of Janus membrane with asymmetric wetting property for fast separation of a trace of blood. Journal of Materials Chemistry B, 2017, 5, 4876-4882.	2.9	22
104	Ultrathin Nanofiltration Membrane from Confined Polymerization within the Nanowire Network for High Efficiency Divalent Cation Removal. ACS Macro Letters, 2019, 8, 1240-1246.	2.3	22
105	Superspreadingâ€Based Fabrication of Asymmetric Porous PAAâ€gâ€PVDF Membranes for Efficient Water Flow Gating. Advanced Materials Interfaces, 2016, 3, 1600615.	1.9	19
106	A microporous polymer ultrathin membrane for the highly efficient removal of dyes from acidic saline solutions. Journal of Membrane Science, 2020, 603, 118027.	4.1	19
107	W ₁₈ O ₄₉ nanowire composites as novel barrier layers for Li–S batteries based on high loading of commercial micro-sized sulfur. RSC Advances, 2016, 6, 15234-15239.	1.7	18
108	g-C3N4 nanofibers network reinforced polyamide nanofiltration membrane for fast desalination. Separation and Purification Technology, 2022, 293, 121125.	3.9	18

#	Article	IF	CITATIONS
109	Effect of Electrolyte Pretreatment on the Formation of TiO ₂ Nanotubes: An Ignored yet Nonâ€negligible Factor. ChemElectroChem, 2018, 5, 1006-1012.	1.7	17
110	In-situ generation of polymer molecular sieves in polymer membranes for highly selective gas separation. Journal of Membrane Science, 2021, 630, 119302.	4.1	17
111	Mechanical properties of free-standing single layers of metallic nanocrystals. Journal of Materials Chemistry, 2010, 20, 858-861.	6.7	16
112	Zwitterionic Nanohydrogels–Decorated Microporous Membrane with Ultrasensitive Salt Responsiveness for Controlled Water Transport. Small, 2020, 16, e1903925.	5.2	16
113	Free-standing single-walled carbon nanotube–CdSe quantum dots hybrid ultrathin films for flexible optoelectronic conversion devices. Nanoscale, 2012, 4, 4515.	2.8	14
114	Thermally Cross-Linked Amidoxime-Functionalized Polymers of Intrinsic Microporosity Membranes for Highly Selective Hydrogen Separation. ACS Sustainable Chemistry and Engineering, 2021, 9, 9426-9435.	3.2	14
115	Hydrophilic/hydrophobic nanofibres intercalated multilayer membrane with hierarchical structure for efficient oil/water separation. Separation and Purification Technology, 2022, 288, 120672.	3.9	14
116	Polyamide Nanofiltration Membranes from Surfactantâ€Assembly Regulated Interfacial Polymerization: The Effect of Alkyl Chain. Macromolecular Chemistry and Physics, 2021, 222, 2100222.	1.1	12
117	Thin Films Based on Polyimide/Metal–Organic Framework Nanoparticle Composite Membranes with Substantially Improved Stability for CO ₂ /CH ₄ Separation. ACS Applied Nano Materials, 2022, 5, 8997-9007.	2.4	11
118	Organized Molecular Interface-Induced Noncrystallizable Polymer Ultrathin Nanosheets with Ordered Chain Alignment. ACS Nano, 2016, 10, 948-956.	7.3	10
119	High performance metal oxide based sensing device using an electrode with a solid/liquid/air triphase interface. Nano Research, 2017, 10, 2998-3004.	5.8	10
120	Conformal Filling of TiO 2 Nanotubes with Dense M x S y Films for 3D Heterojunctions: The Anion Effect. ChemElectroChem, 2019, 6, 1177-1182.	1.7	10
121	Film levitation and central jet of droplet impact on nanotube surface at superheated conditions. Physical Review E, 2020, 102, 043108.	0.8	10
122	Efficient demulsification of ultralow-concentration crude oil-in-water emulsion by three-dimensional superhydrophilic channels. Science China Materials, 2022, 65, 213-219.	3.5	10
123	Enhancing the CO2 plasticization resistance of thin polymeric membranes by designing Metal-polymer complexes. Separation and Purification Technology, 2022, 289, 120699.	3.9	10
124	Protein-inspired synthesis of SnO ₂ nanocrystals with controlled carbon nanocoating as anode materials for lithium-ion battery. RSC Advances, 2013, 3, 1307-1310.	1.7	9
125	Freeâ€Standing, Singleâ€Bilayerâ€Thick Polymeric Nanosheets via Spatially Confined Polymerization. Macromolecular Rapid Communications, 2014, 35, 1055-1060.	2.0	9
126	2D Confined-Space Assisted Growth of Molecular-Level-Thick Polypyrrole Sheets with High Conductivity and Transparency. Macromolecular Rapid Communications, 2016, 37, 590-596.	2.0	9

#	Article	IF	CITATIONS
127	Free-standing nanofibrous platinum sheets and their conductivity. Chemical Communications, 2006, , 4688.	2.2	8
128	Superhydrophilic Sub-1-nm Porous Membrane with Electroneutral Surface for Nonselective Transport of Small Organic Molecules. ACS Applied Materials & Interfaces, 2020, 12, 38778-38787.	4.0	8
129	Ultrapermeable polyamide nanofiltration membrane formed on a self-constructed cellulose nanofibers interlayer. Chemical Engineering Research and Design, 2022, 179, 249-256.	2.7	7
130	Micrometer-sized MOF particles incorporated mixed-matrix membranes driven by π-π interfacial interactions for improved gas separation. Separation and Purification Technology, 2022, , 121258.	3.9	7
131	Nanomechanical properties of reversed surfactant bilayers formed in micrometre-sized holes. Chemical Communications, 2008, , 954.	2.2	6
132	Dissecting the Chain Length Effect on Separation of Alkane-in-Water Emulsions with Superwetting Microchannels. ACS Applied Materials & amp; Interfaces, 2022, 14, 6157-6166.	4.0	6
133	Thermal and Mechanical Properties of Dried Foam Films and Their Incorporation of Water-Soluble Compounds. Langmuir, 2010, 26, 10506-10512.	1.6	5
134	Calcium Ion Coordinated Polyamide Nanofiltration Membrane for Ultrahigh Perm-selectivity Desalination. Chemical Research in Chinese Universities, 2021, 37, 1101-1109.	1.3	5
135	Pseudo-zwitterions self-assembled from polycation and anion clusters showing exceptional water-cleanable anti-crude-oil-adhesion property. IScience, 2021, 24, 102964.	1.9	4
136	Micelle-assisted fabrication of gel-like PEDOT microspheres: in situ observation of the growth process. Soft Matter, 2011, 7, 2682.	1.2	3
137	Effect of degumming ph value on electrospining of silk fibroin. Thermal Science, 2014, 18, 1703-1704.	0.5	3
138	Polyamide Nanofiltration Membrane from Surfactant-assembly Regulated Interfacial Polymerization of 2-Methylpiperazine for Divalent Cations Removal. Chemical Research in Chinese Universities, 2022, 38, 782-789.	1.3	3
139	Nanowire Oriented On-Surface Growth of Chiral Cystine Crystalline Nanosheets. Langmuir, 2015, 31, 8795-8801.	1.6	1
140	Charge gradient-induced on-surface growth of ultralarge single-crystalline Ag nanomembranes for long surface plasmon propagation. Chemical Communications, 2015, 51, 1957-1960.	2.2	1
141	Ionic strength directed self-assembled polyelectrolyte single-bilayer membrane for low-pressure nanofiltration. Frontiers of Chemical Science and Engineering, 2022, 16, 699-708.	2.3	1