Lingjie Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7385991/publications.pdf

Version: 2024-02-01

101496 106281 4,745 106 36 65 citations g-index h-index papers 114 114 114 7041 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Seeing the unseen: AIE luminogens for super-resolution imaging. Coordination Chemistry Reviews, 2022, 451, 214279.	9.5	48
2	Facilely prepared aggregation-induced emission (AIE) nanocrystals with deep-red emission for super-resolution imaging. Chemical Science, 2022, 13, 1270-1280.	3.7	24
3	Seeing Structural Mechanisms of Optimized Piezoelectric and Thermoelectric Bulk Materials through Structural Defect Engineering. Materials, 2022, 15, 487.	1.3	3
4	Biodegradable polyphosphazene-based nanodrug to regulate redox homeostasis for augmented chemo-photodynamic therapy. Dyes and Pigments, 2022, 199, 110095.	2.0	3
5	Pt nanoenzyme decorated yolk-shell nanoplatform as an oxygen generator for enhanced multi-modality imaging-guided phototherapy. Journal of Colloid and Interface Science, 2022, 616, 759-768.	5.0	10
6	Aggregation-Induced Emission (AIE) in Super-resolution Imaging: Cationic AIE Luminogens (AIEgens) for Tunable Organelle-Specific Imaging and Dynamic Tracking in Nanometer Scale. ACS Nano, 2022, 16, 5932-5942.	7.3	26
7	Gold Nanorods/Metal–Organic Framework Hybrids: Photo-Enhanced Peroxidase-Like Activity and SERS Performance for Organic Dyestuff Degradation and Detection. Analytical Chemistry, 2022, 94, 4484-4494.	3. 2	45
8	Tumor microenvironment self-regulation: Bimetallic metal nanozyme-derived multifunctional nanodrug for optimizable cascade catalytic reaction-synergetic anti-tumor theranostics. Chemical Engineering Journal, 2022, 442, 136096.	6.6	27
9	Amino acids and doxorubicin as building blocks for metal ionâ€driven selfâ€assembly of biodegradable polyprodrugs for tumor theranostics. Acta Biomaterialia, 2022, 147, 245-257.	4.1	8
10	Effects of surface condition of conductive electrospun nanofiber mats on cell behavior for nerve tissue engineering. Materials Science and Engineering C, 2021, 120, 111795.	3.8	12
11	An easily synthesized AIE luminogen for lipid droplet-specific super-resolution imaging and two-photon imaging. Materials Chemistry Frontiers, 2021, 5, 1872-1883.	3.2	41
12	Recent advances in luminescent materials for super-resolution imaging <i>via</i> stimulated emission depletion nanoscopy. Chemical Society Reviews, 2021, 50, 667-690.	18.7	105
13	Facile preparation of pH/redox dual-responsive biodegradable polyphosphazene prodrugs for effective cancer chemotherapy. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111573.	2.5	18
14	Recent Advances on Organic Fluorescent Probes for Stimulated Emission Depletion (STED) Microscopy. Combinatorial Chemistry and High Throughput Screening, 2021, 24, 1017-1030.	0.6	2
15	Bimetallic Metal–Organic Frameworks: Enhanced Peroxidase-like Activities for the Self-Activated Cascade Reaction. ACS Applied Materials & Interfaces, 2021, 13, 36106-36116.	4.0	41
16	pH/ROS Dual-Responsive Polymer–Drug-Based Nanocarriers: Click-Reaction Preparation and Fluorescence Imaging-Guided Chemotherapy and Photodynamic Therapy. ACS Applied Bio Materials, 2021, 4, 6294-6303.	2.3	9
17	Molecular Insights into the Recruiting Between UCP2 and DDX5/UBAP2L in the Metabolic Plasticity of Non-Small-Cell Lung Cancer. Journal of Chemical Information and Modeling, 2021, 61, 3978-3987.	2.5	8
18	Construction of hyperbranched and pH-responsive polymeric nanocarriers by yne-phenol click-reaction for tumor synergistic chemotherapy. Colloids and Surfaces B: Biointerfaces, 2021, 204, 111790.	2.5	11

#	Article	IF	Citations
19	Yolk-shell polyphosphazenes nanotheranostics for multimodal imaging guided effective phototherapy. Composites Communications, 2021, 28, 100950.	3.3	4
20	Construction polyprodrugs by click-reactions and metal-coordination: pH-responsive release for magnetic resonance imaging guided chemotherapy. Chemical Engineering Journal, 2021, 422, 130108.	6.6	5
21	Donor-Acceptor Typed AIE Luminogens with Near-infrared Emission for Super-resolution Imaging. Chemical Research in Chinese Universities, 2021, 37, 143-149.	1.3	9
22	Computational identification of potential chemoprophylactic agents according to dynamic behavior of peroxisome proliferator-activated receptor gamma. RSC Advances, 2021, 11, 147-159.	1.7	5
23	Facile fabrication of flexible concave microlens arrays with a well-controlled curvature. Materials Chemistry Frontiers, 2021, 5, 7759-7766.	3.2	1
24	Recent advances in graphite carbon nitride-based nanocomposites: structure, antibacterial properties and synergies. Nanoscale Advances, 2021, 3, 3708-3729.	2.2	35
25	Thermal Decomposition of Photocurable Energetic APNIMMO Polymer. Propellants, Explosives, Pyrotechnics, 2021, 46, 1767.	1.0	4
26	Bindings of PPARÎ ³ ligand-binding domain with 5-cholesten-3Î ² , 25-diol, 3-sulfate: accurate prediction by molecular simulation. Journal of Biomolecular Structure and Dynamics, 2020, 38, 1918-1926.	2.0	3
27	Porous N-doped carbon nanoflakes supported hybridized SnO2/Co3O4 nanocomposites as high-performance anode for lithium-ion batteries. Journal of Colloid and Interface Science, 2020, 560, 546-554.	5.0	33
28	Deep-Red Fluorescent Organic Nanoparticles with High Brightness and Photostability for Super-Resolution in Vitro and in Vivo Imaging Using STED Nanoscopy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 6814-6826.	4.0	40
29	A Facilely Synthesized Dualâ€5tate Emission Platform for Picric Acid Detection and Latent Fingerprint Visualization. Chemistry - A European Journal, 2020, 26, 2741-2748.	1.7	19
30	Multistage tumor microenvironment-responsive theranostic nanopeanuts: Toward multimode imaging guided chemo-photodynamic therapy. Chemical Engineering Journal, 2020, 385, 123893.	6.6	50
31	Tuning molecular aggregation to achieve highly bright AIE dots for NIR-II fluorescence imaging and NIR-I photoacoustic imaging. Chemical Science, 2020, 11, 8157-8166.	3.7	70
32	A tumor-microenvironment fully responsive nano-platform for MRI-guided photodynamic and photothermal synergistic therapy. Journal of Materials Chemistry B, 2020, 8, 8271-8281.	2.9	32
33	One-pot synthesis of acid-degradable polyphosphazene prodrugs for efficient tumor chemotherapy. Journal of Materials Chemistry B, 2020, 8, 10540-10548.	2.9	20
34	Acid-Responsive and Biologically Degradable Polyphosphazene Nanodrugs for Efficient Drug Delivery. ACS Biomaterials Science and Engineering, 2020, 6, 4285-4293.	2.6	25
35	Versatile Nanoplatforms with enhanced Photodynamic Therapy: Designs and Applications. Theranostics, 2020, 10, 7287-7318.	4.6	58
36	Continuous phase regulation of MoSe ₂ from 2H to 1T for the optimization of peroxidase-like catalysis. Journal of Materials Chemistry B, 2020, 8, 6451-6458.	2.9	14

#	Article	lF	Citations
37	Intelligent nanoflowers: a full tumor microenvironment-responsive multimodal cancer theranostic nanoplatform. Nanoscale, 2019, 11, 15508-15518.	2.8	66
38	Liquid-phase exfoliated-graphene-supporting nanostructural sulfur as high-performance lithium–sulfur batteries cathode. Composites Communications, 2019, 15, 149-154.	3.3	10
39	One-step synthesis of cross-linked and hollow microporous organic–inorganic hybrid nanoreactors for selective redox reactions. Nanoscale, 2019, 11, 15017-15022.	2.8	5
40	Super-Resolution Visualization of Self-Assembling Helical Fibers Using Aggregation-Induced Emission Luminogens in Stimulated Emission Depletion Nanoscopy. ACS Nano, 2019, 13, 11863-11873.	7.3	45
41	High-Performance and Reactivation Characteristics of High-Quality, Graphene-Supported SnS ₂ Heterojunctions for a Lithium-Ion Battery Anode. ACS Applied Materials & Discrete Supplied Materials & Discrete Su	4.0	37
42	pH/redox dual-stimuli-responsive cross-linked polyphosphazene nanoparticles for multimodal imaging-guided chemo-photodynamic therapy. Nanoscale, 2019, 11, 9457-9467.	2.8	71
43	Advanced MoS ₂ and graphene heterostructures as high-performance anode for sodium-ion batteries. Nanotechnology, 2019, 30, 104003.	1.3	21
44	Salt and water co-assisted exfoliation of graphite in organic solvent for efficient and large scale production of high-quality graphene. Journal of Colloid and Interface Science, 2019, 535, 92-99.	5.0	40
45	Triphenylamine cored electron-donors for solution-processed organic solar cells: From tri-armed molecules to tetra-armed molecules. Dyes and Pigments, 2018, 153, 291-299.	2.0	6
46	Multi-layered tumor-targeting photothermal-doxorubicin releasing nanotubes eradicate tumors <i>in vivo</i> with negligible systemic toxicity. Nanoscale, 2018, 10, 8536-8546.	2.8	26
47	Controlled preparation of high quality WS ₂ nanostructures by a microwave-assisted solvothermal method. CrystEngComm, 2018, 20, 2324-2330.	1.3	25
48	Multifunctional Nanoflowers for Simultaneous Multimodal Imaging and High-Sensitivity Chemo-Photothermal Treatment. Bioconjugate Chemistry, 2018, 29, 559-570.	1.8	36
49	Gold nanostars decorated MnO2 nanosheets for magnetic resonance imaging and photothermal erasion of lung cancer cell. Materials Today Communications, 2018, 16, 97-104.	0.9	33
50	Fluorescent Organic Nanoparticles Constructed by a Facile "Self-Isolation Enhanced Emission― Strategy for Cell Imaging. ACS Applied Nano Materials, 2018, 1, 2324-2331.	2.4	23
51	Microwave-assisted mass synthesis of Mo _{1â^x} W _x S ₂ alloy composites with a tunable lithium storage property. Dalton Transactions, 2018, 47, 15148-15154.	1.6	9
52	A Strategy of "Selfâ€ksolated Enhanced Emission―to Achieve Highly Emissive Dualâ€State Emission for Organic Luminescent Materials. Chemistry - A European Journal, 2018, 24, 10383-10389.	1.7	61
53	Enhanced Lithium Storage Performance of Liquidâ€Phase Exfoliated Graphene Supported WS ₂ Heterojunctions. ChemElectroChem, 2018, 5, 3222-3228.	1.7	18
54	On the origin of the synergy between the Pt nanoparticles and MnO2 nanosheets in Wonton-like 3D nanozyme oxidase mimics. Biosensors and Bioelectronics, 2018, 121, 159-165.	5. 3	90

#	Article	IF	CITATIONS
55	Enhanced Response of Metformin towards the Cancer Cells due to Synergism with Multi-walled Carbon Nanotubes in Photothermal Therapy. Scientific Reports, 2017, 7, 1071.	1.6	18
56	Microwave–assisted synthesis of water–disperse and biocompatible NaGdF 4 : Yb,Ln@NaGdF 4 nanocrystals for UCL/CT/MR multimodal imaging. Journal of Fluorine Chemistry, 2017, 200, 77-83.	0.9	11
57	Stepwise growth of gold coated cancer targeting carbon nanotubes for the precise delivery of doxorubicin combined with photothermal therapy. Journal of Materials Chemistry B, 2017, 5, 1380-1387.	2.9	27
58	Facile Preparation of Doxorubicin-Loaded and Folic Acid-Conjugated Carbon Nanotubes@Poly(<i>N</i> -vinyl pyrrole) for Targeted Synergistic Chemo–Photothermal Cancer Treatment. Bioconjugate Chemistry, 2017, 28, 2815-2822.	1.8	49
59	Multifunctional polyphosphazene-coated multi-walled carbon nanotubes for the synergistic treatment of redox-responsive chemotherapy and effective photothermal therapy. Polymer Chemistry, 2017, 8, 6938-6942.	1.9	30
60	Controlled synthesis of water-dispersible and superparamagnetic Fe ₃ O ₄ nanomaterials by a microwave-assisted solvothermal method: from nanocrystals to nanoclusters. CrystEngComm, 2017, 19, 5089-5099.	1.3	31
61	MnO 2 nanosheets as an artificial enzyme to mimic oxidase for rapid and sensitive detection of glutathione. Biosensors and Bioelectronics, 2017, 90, 69-74.	5.3	309
62	A1-A-A1 type small molecules terminated with naphthalimide building blocks for efficient non-fullerene organic solar cells. Dyes and Pigments, 2017, 137, 43-49.	2.0	18
63	Rareâ€Earthâ€Based Nanoparticles with Simultaneously Enhanced Nearâ€Infrared (NIR)â€Visible (Vis) and NIRâ€NIR Dualâ€Conversion Luminescence for Multimodal Imaging. Chemistry - an Asian Journal, 2016, 11, 1050-1058.	1.7	21
64	Facile synthesis of ultrafine SnO2 nanoparticles on graphene nanosheets via thermal decomposition of tin-octoate as anode for lithium ion batteries. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	8
65	Spirobifluorene-cored small molecules containing four diketopyrrolopyrrole arms for solution-processed organic solar cells. Journal of Materials Science, 2016, 51, 8018-8026.	1.7	10
66	Intense white emission from a single-upconversion nanoparticle and tunable emission colour with laser power. Journal of Materials Chemistry C, 2016, 4, 6975-6981.	2.7	31
67	Synthesis and characterization of D-A-A type regular terpolymers with narrowed band-gap and their application in high performance polymer solar cells. Organic Electronics, 2016, 32, 237-243.	1.4	25
68	Controlled synthesis of NdF3 and NaNdF4 micro- or nanocrystals by one-pot microwave-assisted hydrothermal reaction. Journal of Fluorine Chemistry, 2015, 178, 286-290.	0.9	5
69	Fluorescent and Cross-linked Organic–Inorganic Hybrid Nanoshells for Monitoring Drug Delivery. ACS Applied Materials & Interfaces, 2015, 7, 4990-4997.	4.0	68
70	Controllable and mass fabrication of highly luminescent N-doped carbon dots for bioimaging applications. RSC Advances, 2015, 5, 22343-22349.	1.7	13
71	NaGdF ₄ :Yb ³⁺ /Er ³⁺ @NaGdF ₄ :Nd ³⁺ @Sodium-Multifunctional and Biocompatible Ultrasmall Core–Shell Nanohybrids for UCL/MR/CT Multimodal Imaging. ACS Applied Materials & Diterfaces, 2015, 7, 16257-16265.	Gluconate: 4.0	78
72	One-pot synthesis of highly cross-linked fluorescent polyphosphazene nanoparticles for cell imaging. Polymer Chemistry, 2015, 6, 3155-3163.	1.9	46

#	Article	IF	CITATIONS
73	One-pot synthesis of fluorescent and cross-linked polyphosphazene nanoparticles for highly sensitive and selective detection of dopamine in body fluids. RSC Advances, 2015, 5, 92762-92768.	1.7	16
74	Golden Single-Walled Carbon Nanotubes Prepared Using Double Layer Polysaccharides Bridge for Photothermal Therapy. ACS Applied Materials & Samp; Interfaces, 2014, 6, 4989-4996.	4.0	44
75	"Fastening―Porphyrin in Highly Cross-Linked Polyphosphazene Hybrid Nanoparticles: Powerful Red Fluorescent Probe for Detecting Mercury Ion. Langmuir, 2014, 30, 4458-4464.	1.6	54
76	Highly Cross-Linked and Biocompatible Polyphosphazene-Coated Superparamagnetic Fe ₃ O ₄ Nanoparticles for Magnetic Resonance Imaging. Langmuir, 2013, 29, 9156-9163.	1.6	63
77	Folateâ€Conjugated PEG on Single Walled Carbon Nanotubes for Targeting Delivery of Doxorubicin to Cancer Cells. Macromolecular Bioscience, 2013, 13, 735-744.	2.1	63
78	Facile Synthesis of Superparamagnetic Fe ₃ O ₄ @polyphosphazene@Au Shells for Magnetic Resonance Imaging and Photothermal Therapy. ACS Applied Materials & Samp; Interfaces, 2013, 5, 4586-4591.	4.0	112
79	Gold Nanoparticles Grown on Ionic Liquidâ€Functionalized Singleâ€Walled Carbon Nanotubes: New Materials for Photothermal Therapy. Chemistry - A European Journal, 2012, 18, 13314-13319.	1.7	31
80	Gold nanoparticles as computerized tomography (CT) contrast agents. RSC Advances, 2012, 2, 12515.	1.7	132
81	Simultaneous Reduction and Surface Functionalization of Graphene Oxide by Natural Cellulose with the Assistance of the Ionic Liquid. Journal of Physical Chemistry C, 2012, 116, 16294-16299.	1.5	77
82	Fabrication of reduced graphene oxide hybrid materials that exhibit strong fluorescence. Journal of Materials Chemistry, 2012, 22, 14868.	6.7	11
83	Targeted therapy of SMMC-7721 liver cancer in vitro and in vivo with carbon nanotubes based drug delivery system. Journal of Colloid and Interface Science, 2012, 365, 143-149.	5.0	179
84	Single walled carbon nanotubes as drug delivery vehicles: Targeting doxorubicin to tumors. Biomaterials, 2012, 33, 1689-1698.	5.7	301
85	Photochemical Behavior of High Quantum Yield SWNTs Functionalized with Anthracene Salts. Chemistry - an Asian Journal, 2010, 5, 1988-1991.	1.7	5
86	Preparation and Cellular Uptake of pHâ€Dependent Fluorescent Singleâ€Wall Carbon Nanotubes. Chemistry - A European Journal, 2010, 16, 556-561.	1.7	26
87	An Internal Fluorescent Probe Based on Anthracene to Evaluate Cation–Anion Interactions in Imidazolium Salts. Chemistry - A European Journal, 2010, 16, 6473-6481.	1.7	21
88	Oneâ€Pot Synthesis of Highly Magnetically Sensitive Nanochains Coated with a Highly Crossâ€Linked and Biocompatible Polymer. Angewandte Chemie - International Edition, 2010, 49, 8476-8479.	7.2	73
89	Coordination chemistry on the surface of single-walled carbon nanotubes. Inorganica Chimica Acta, 2010, 363, 3926-3931.	1.2	11
90	Core@shell nanostructures for photothermal conversion: Tunable noble metal nanoshells on cross-linked polymer submicrospheres. Journal of Materials Chemistry, 2010, 20, 5493.	6.7	30

#	Article	IF	Citations
91	Advanced technology for functionalization of carbon nanotubes. Progress in Natural Science: Materials International, 2009, 19, 801-810.	1.8	285
92	Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials, 2009, 30, 6041-6047.	5.7	479
93	Superparamagnetic submicro-megranates: Fe3O4 nanoparticles coated with highly cross-linked organic/inorganic hybrids. Chemical Communications, 2009, , 6370.	2.2	43
94	Cell Behaviors on Polysaccharide-Wrapped Single-Wall Carbon Nanotubes: A Quantitative Study of the Surface Properties of Biomimetic Nanofibrous Scaffolds. ACS Nano, 2009, 3, 3200-3206.	7.3	67
95	The ionic liquid-associated synthesis of a cellulose/SWCNT complex and its remarkable biocompatibility. Journal of Materials Chemistry, 2009, 19, 3612.	6.7	56
96	†Hierarchical self-assembly' of helical amylose/SWNTs complex. Science in China Series B: Chemistry, 2008, 51, 269-274.	0.8	4
97	A Facile Strategy for Preparation of Fluorescent SWNT Complexes with High Quantum Yields Based on lon Exchange. Advanced Functional Materials, 2008, 18, 857-864.	7.8	34
98	Fabrication of gold nano- and microstructures in ionic liquidsâ€"A remarkable anion effect. Journal of Colloid and Interface Science, 2008, 323, 260-266.	5.0	63
99	Fabrication of Dendritic Gold Nanoparticles by Use of an Ionic Polymer Template. Langmuir, 2008, 24, 2699-2704.	1.6	49
100	Mass synthesis of large, single-crystal gold nanoplates using a pyridinium-based ionic liquid., 2008,,.		0
101	Fabrication of Octahedral Gold Nanostructures Using an Alcoholic Ionic Liquid. Chemistry Letters, 2008, 37, 106-107.	0.7	10
102	Largeâ€Scale Production of Homogeneous Helical Amylose/SWNTs Complexes with Good Biocompatibility. Macromolecular Rapid Communications, 2007, 28, 2180-2184.	2.0	31
103	Synthesis and characterization of a kind of poly(3-butylthiophene methine) with azo side groups. Journal of Applied Polymer Science, 2005, 97, 1261-1265.	1.3	4
104	Photochemical-Controlled Switching Based on Azobenzene Monolayer Modified Silicon (111) Surface. Journal of Physical Chemistry B, 2005, 109, 14465-14468.	1.2	43
105	Boosting the AlEgen-based photo-theranostic platform by balancing radiative decay and non-radiative decay. Materials Chemistry Frontiers, 0, , .	3.2	11
106	Organelle Interaction and Drug Discovery: Towards Correlative Nanoscopy and Molecular Dynamics Simulation. Frontiers in Pharmacology, 0, 13 , .	1.6	1