Leena-Sisko Johansson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7385912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose, 2006, 13, 665-677.	2.4	317
2	Porous N,P-doped carbon from coconut shells with high electrocatalytic activity for oxygen reduction: Alternative to Pt-C for alkaline fuel cells. Applied Catalysis B: Environmental, 2017, 204, 394-402.	10.8	294
3	Poly(<i>N</i> -isopropylacrylamide) Brushes Grafted from Cellulose Nanocrystals via Surface-Initiated Single-Electron Transfer Living Radical Polymerization. Biomacromolecules, 2010, 11, 2683-2691.	2.6	261
4	Reproducible XPS on biopolymers: cellulose studies. Surface and Interface Analysis, 2004, 36, 1018-1022.	0.8	245
5	Graphene/cellulose nanocomposite paper with high electrical and mechanical performances. Journal of Materials Chemistry, 2011, 21, 13991.	6.7	240
6	Enhanced mechanical and electrical properties of polyimide film by graphene sheets via in situ polymerization. Polymer, 2011, 52, 5237-5242.	1.8	213
7	Evaluation of surface lignin on cellulose fibers with XPS. Applied Surface Science, 1999, 144-145, 92-95.	3.1	195
8	Nonleaching Antimicrobial Films Prepared from Surface-Modified Microfibrillated Cellulose. Biomacromolecules, 2007, 8, 2149-2155.	2.6	195
9	Modification of Cellulose Films by Adsorption of CMC and Chitosan for Controlled Attachment of Biomolecules. Biomacromolecules, 2011, 12, 4311-4318.	2.6	174
10	Free radical graft copolymerization of nanofibrillated cellulose with acrylic monomers. Carbohydrate Polymers, 2011, 84, 1039-1047.	5.1	161
11	Studies of metallic thin film growth in an atomic layer epitaxy reactor using M(acac)2 (M=Ni, Cu, Pt) precursors. Applied Surface Science, 2000, 157, 151-158.	3.1	145
12	Surface Functionalized Nanofibrillar Cellulose (NFC) Film as a Platform for Immunoassays and Diagnostics. Biointerphases, 2012, 7, 61.	0.6	138
13	Effect of annealing in processing of strontium titanate thin films by ALD. Applied Surface Science, 2003, 211, 102-112.	3.1	132
14	A comparative study of mechanical, thermal and electrical properties of graphene-, graphene oxide- and reduced graphene oxide-doped microfibrillated cellulose nanocomposites. Composites Part B: Engineering, 2018, 147, 104-113.	5.9	128
15	The behaviour of cationic NanoFibrillar Cellulose in aqueous media. Cellulose, 2011, 18, 1213-1226.	2.4	123
16	All-lignin approach to prepare cationic colloidal lignin particles: stabilization of durable Pickering emulsions. Green Chemistry, 2017, 19, 5831-5840.	4.6	122
17	Experimental evidence on medium driven cellulose surface adaptation demonstrated using nanofibrillated cellulose. Soft Matter, 2011, 7, 10917.	1.2	111
18	Processable polyaniline suspensions through in situ polymerization onto nanocellulose. European Polymer Journal, 2013, 49, 335-344.	2.6	107

#	Article	IF	CITATIONS
19	Photoluminescent Hybrids of Cellulose Nanocrystals and Carbon Quantum Dots as Cytocompatible Probes for <i>in Vitro</i> Bioimaging. Biomacromolecules, 2017, 18, 2045-2055.	2.6	100
20	High‣trength Composite Fibers from Cellulose–Lignin Blends Regenerated from Ionic Liquid Solution. ChemSusChem, 2015, 8, 4030-4039.	3.6	99
21	CMC-Modified Cellulose Biointerface for Antibody Conjugation. Biomacromolecules, 2012, 13, 1051-1058.	2.6	93
22	Heterogeneous modification of various celluloses with fatty acids. Cellulose, 2011, 18, 393-404.	2.4	92
23	Synthesis of Cellulose Nanocrystals Carrying Tyrosine Sulfate Mimetic Ligands and Inhibition of Alphavirus Infection. Biomacromolecules, 2014, 15, 1534-1542.	2.6	86
24	Crosslinked PVA nanofibers reinforced with cellulose nanocrystals: Water interactions and thermomechanical properties. Journal of Applied Polymer Science, 2014, 131, .	1.3	86
25	Viscoelastic Properties of Cationic Starch Adsorbed on Quartz Studied by QCM-D. Langmuir, 2004, 20, 10900-10909.	1.6	84
26	Surface functionalization of nanofibrillated cellulose using click-chemistry approach in aqueous media. Cellulose, 2011, 18, 1201.	2.4	83
27	Generic Method for Attaching Biomolecules via Avidin–Biotin Complexes Immobilized on Films of Regenerated and Nanofibrillar Cellulose. Biomacromolecules, 2012, 13, 2802-2810.	2.6	83
28	Layer-by-layer assembled hydrophobic coatings for cellulose nanofibril films and textiles, made of polylysine and natural wax particles. Carbohydrate Polymers, 2017, 173, 392-402.	5.1	81
29	Atomic force microscopy study of titanium dioxide thin films grown by atomic layer epitaxy. Thin Solid Films, 1993, 228, 32-35.	0.8	80
30	Cellulose Nanocrystal Submonolayers by Spin Coating. Langmuir, 2007, 23, 9674-9680.	1.6	76
31	Superhydrophobic Paper from Nanostructured Fluorinated Cellulose Esters. ACS Applied Materials & Interfaces, 2018, 10, 11280-11288.	4.0	75
32	Interfacial Properties of Lignin-Based Electrospun Nanofibers and Films Reinforced with Cellulose Nanocrystals. ACS Applied Materials & Interfaces, 2012, 4, 6849-6856.	4.0	74
33	Nanofibrillated cellulose/carboxymethyl cellulose composite with improved wet strength. Cellulose, 2013, 20, 1459-1468.	2.4	71
34	Monitoring Fibre Surfaces with XPS in Papermaking Processes. Mikrochimica Acta, 2002, 138, 217-223.	2.5	69
35	Preferential Adsorption and Activity of Monocomponent Cellulases on Lignocellulose Thin Films with Varying Lignin Content. Biomacromolecules, 2013, 14, 1231-1239.	2.6	69
36	Adsorption of Cationic Starch on Cellulose Studied by QCM-D. Langmuir, 2008, 24, 4743-4749.	1.6	68

#	Article	IF	CITATIONS
37	Growth of LaCoO3 thin films from \hat{l}^2 -diketonate precursors. Applied Surface Science, 1997, 112, 243-250.	3.1	67
38	Functional Graphene by Thiolâ€ene Click Chemistry. Chemistry - A European Journal, 2015, 21, 3183-3186.	1.7	66
39	On surface distributions in natural cellulosic fibres. Surface and Interface Analysis, 2004, 36, 706-710.	0.8	65
40	Bicomponent Lignocellulose Thin Films to Study the Role of Surface Lignin in Cellulolytic Reactions. Biomacromolecules, 2012, 13, 3228-3240.	2.6	62
41	Cilia-Mimetic Hairy Surfaces Based on End-Immobilized Nanocellulose Colloidal Rods. Biomacromolecules, 2013, 14, 2807-2813.	2.6	60
42	An XPS round robin investigation on analysis of wood pulp fibres and filter paper. Surface Science, 2005, 584, 126-132.	0.8	58
43	Complexes of Magnetic Nanoparticles with Cellulose Nanocrystals as Regenerable, Highly Efficient, and Selective Platform for Protein Separation. Biomacromolecules, 2017, 18, 898-905.	2.6	57
44	Lignin-Based Porous Supraparticles for Carbon Capture. ACS Nano, 2021, 15, 6774-6786.	7.3	56
45	Deposition of yttria-stabilized zirconia thin films by atomic layer epitaxy from β-diketonate and organometallic precursors. Journal of Materials Chemistry, 2002, 12, 442-448.	6.7	55
46	Understanding the interactions of cellulose fibres and deep eutectic solvent of choline chloride and urea. Cellulose, 2018, 25, 137-150.	2.4	55
47	Lubricating properties of silica/graphene oxide composite powders. Carbon, 2014, 79, 227-235.	5.4	53
48	Phosphorylated cellulose nanofibers exhibit exceptional capacity for uranium capture. Cellulose, 2020, 27, 10719-10732.	2.4	48
49	Direct Interfacial Modification of Nanocellulose Films for Thermoresponsive Membrane Templates. ACS Applied Materials & Interfaces, 2016, 8, 2923-2927.	4.0	47
50	Chemical modification of cellulosic fibers for better convertibility in packaging applications. Carbohydrate Polymers, 2013, 96, 549-559.	5.1	46
51	Surface-controlled growth of magnesium oxide thin films by atomic layer epitaxy. Journal of Materials Chemistry, 1999, 9, 2449-2452.	6.7	43
52	A method for the heterogeneous modification of nanofibrillar cellulose in aqueous media. Carbohydrate Polymers, 2014, 100, 107-115.	5.1	43
53	Noncovalent Surface Modification of Cellulose Nanopapers by Adsorption of Polymers from Aprotic Solvents. Langmuir, 2017, 33, 5707-5712.	1.6	43
54	Nanodiamonds on tetrahedral amorphous carbon significantly enhance dopamine detection and cell viability. Biosensors and Bioelectronics, 2017, 88, 273-282.	5.3	41

#	Article	IF	CITATIONS
55	Effect of lignin on the morphology and rheological properties of nanofibrillated cellulose produced from Î ³ -valerolactone/water fractionation process. Cellulose, 2018, 25, 179-194.	2.4	41
56	Control of the Size of Silver Nanoparticles and Release of Silver in Heat Treated SiO2-Ag Composite Powders. Materials, 2018, 11, 80.	1.3	39
57	Affibody conjugation onto bacterial cellulose tubes and bioseparation of human serum albumin. RSC Advances, 2014, 4, 51440-51450.	1.7	38
58	Understanding the mechanisms of oxygen diffusion through surface functionalized nanocellulose films. Carbohydrate Polymers, 2017, 174, 309-317.	5.1	38
59	Solvent impact on esterification and film formation ability of nanofibrillated cellulose. Cellulose, 2013, 20, 2359-2370.	2.4	37
60	Effect of PEG–PDMAEMA Block Copolymer Architecture on Polyelectrolyte Complex Formation with Heparin. Biomacromolecules, 2016, 17, 2891-2900.	2.6	37
61	Cellulose as the <i>in situ</i> reference for organic XPS. Why? Because it works. Surface and Interface Analysis, 2020, 52, 1134-1138.	0.8	37
62	Patterned Immobilization of Antibodies within Roll-to-Roll Hot Embossed Polymeric Microfluidic Channels. PLoS ONE, 2013, 8, e68918.	1.1	36
63	An XPS study of SrS:Ce thin films for electroluminescent devices. Applied Surface Science, 1998, 133, 205-212.	3.1	35
64	Preparation of lignin and extractive model surfaces by using spincoating technique – Application for QCM-D studies. Nordic Pulp and Paper Research Journal, 2006, 21, 444-450.	0.3	32
65	Using gelatin protein to facilitate paper thermoformability. Reactive and Functional Polymers, 2014, 85, 175-184.	2.0	32
66	Effect of Molecular Architecture of PDMAEMA–POEGMA Random and Block Copolymers on Their Adsorption on Regenerated and Anionic Nanocelluloses and Evidence of Interfacial Water Expulsion. Journal of Physical Chemistry B, 2015, 119, 15275-15286.	1.2	30
67	Adsorption of Chitosan on PET Films Monitored by Quartz Crystal Microbalance. Biomacromolecules, 2008, 9, 2207-2214.	2.6	29
68	Micro-patterns on nanocellulose films and paper by photo-induced thiol–yne click coupling: a facile method toward wetting with spatial resolution. Cellulose, 2018, 25, 367-375.	2.4	29
69	Adsorption of Fucoidan and Chitosan Sulfate on Chitosan Modified PET Films Monitored by QCM-D. Biomacromolecules, 2009, 10, 630-637.	2.6	28
70	Preparation of photoreactive nanocellulosic materials via benzophenone grafting. RSC Advances, 2016, 6, 85100-85106.	1.7	27
71	Influence of pulp bleaching and compatibilizer selection on performance of pulp fiber reinforced PLA biocomposites. Journal of Applied Polymer Science, 2019, 136, 47955.	1.3	27
72	Critical comparison of methods for surface coverage by extractives and lignin in pulps by X-ray photoelectron spectroscopy (XPS). Holzforschung, 2006, 60, 149-155.	0.9	26

#	Article	IF	CITATIONS
73	Bioinspired lubricating films of cellulose nanofibrils and hyaluronic acid. Colloids and Surfaces B: Biointerfaces, 2016, 138, 86-93.	2.5	26
74	Partially Reduced Graphene Oxide Modified Tetrahedral Amorphous Carbon Thin-Film Electrodes as a Platform for Nanomolar Detection of Dopamine. Journal of Physical Chemistry C, 2017, 121, 8153-8164.	1.5	26
75	Surface Structuring and Water Interactions of Nanocellulose Filaments Modified with Organosilanes toward Wearable Materials. ACS Applied Nano Materials, 2018, 1, 5279-5288.	2.4	26
76	Clean and reactive nanostructured cellulose surface. Cellulose, 2013, 20, 983-990.	2.4	24
77	From vapour to gas: optimising cellulose degradation with gaseous HCl. Reaction Chemistry and Engineering, 2018, 3, 312-318.	1.9	24
78	Antimicrobial Colloidal Silver–Lignin Particles via Ion and Solvent Exchange. ACS Sustainable Chemistry and Engineering, 2019, 7, 15297-15303.	3.2	24
79	Cellulose decorated cavities on ultrathin films of PMMA. Soft Matter, 2009, 5, 1786.	1.2	22
80	XPS and the mediumâ€dependent surface adaptation of cellulose in wood. Surface and Interface Analysis, 2012, 44, 899-903.	0.8	22
81	Control of Protein Affinity of Bioactive Nanocellulose and Passivation Using Engineered Block and Random Copolymers. ACS Applied Materials & Interfaces, 2016, 8, 5668-5678.	4.0	22
82	Open coating with natural wax particles enables scalable, non-toxic hydrophobation of cellulose-based textiles. Carbohydrate Polymers, 2020, 227, 115363.	5.1	22
83	Manipulation of cellulose nanocrystal surface sulfate groups toward biomimetic nanostructures in aqueous media. Carbohydrate Polymers, 2015, 126, 23-31.	5.1	21
84	Self-Assembling Protein–Polymer Bioconjugates for Surfaces with Antifouling Features and Low Nonspecific Binding. ACS Applied Materials & Interfaces, 2019, 11, 3599-3608.	4.0	21
85	Co-exfoliation and fabrication of graphene based microfibrillated cellulose composites – mechanical and thermal stability and functional conductive properties. Nanoscale, 2018, 10, 9569-9582.	2.8	20
86	Electrically Conductive Thin Films Based on Nanofibrillated Cellulose: Interactions with Water and Applications in Humidity Sensing. ACS Applied Materials & Interfaces, 2020, 12, 36437-36448.	4.0	20
87	Antibacterial effects of wood structural components and extractives from Pinus sylvestris and Picea abies on methicillin-resistant Staphylococcus aureus and Escherichia coli O157:H7. BioResources, 2017, 12, 7601-7614.	0.5	20
88	Atomic/molecular layer deposited thin-film alloys of Ti-4,4′-oxydianiline hybrid–TiO2 with tunable properties. Dalton Transactions, 2012, 41, 10731.	1.6	19
89	Comparison of Conventional and Lignin-Rich Microcrystalline Cellulose. BioResources, 2016, 11, .	0.5	19
90	Cellulose carbamate derived cellulose thin films: preparation, characterization and blending with cellulose xanthate. Cellulose, 2019, 26, 7399-7410.	2.4	19

#	Article	IF	CITATIONS
91	Surface characterization of coated powders: Al2 O3 SiO2 -coated TiO2. Surface and Interface Analysis, 1991, 17, 230-236.	0.8	18
92	The effect of ECF and TCF bleaching on the chemical composition of soda-anthraquinone and kraft pulp surfaces. Nordic Pulp and Paper Research Journal, 2002, 17, 357-363.	0.3	18
93	Characterization and Electrochemical Properties of Oxygenated Amorphous Carbon (a-C) Films. Electrochimica Acta, 2016, 220, 137-145.	2.6	18
94	Morphology-Controlled Synthesis of Colloidal Polyphenol Particles from Aqueous Solutions of Tannic Acid. ACS Sustainable Chemistry and Engineering, 2019, 7, 16985-16990.	3.2	18
95	High-Throughput Tailoring of Nanocellulose Films: From Complex Bio-Based Materials to Defined Multifunctional Architectures. ACS Applied Bio Materials, 2020, 3, 7428-7438.	2.3	18
96	Growth of thin Al2O3 films on biaxially oriented polymer films by atomic layer deposition. Thin Solid Films, 2012, 522, 50-57.	0.8	17
97	Novel Insight into the Separation and Composite Utilization of Sclerenchyma Fiber Bundles of Willow Bark. ACS Sustainable Chemistry and Engineering, 2019, 7, 2964-2970.	3.2	16
98	Evolution of carbon nanostructure during pyrolysis of homogeneous chitosan-cellulose composite fibers. Carbon, 2021, 185, 27-38.	5.4	16
99	A study by X-ray photoelectron spectroscopy (XPS) of the chemistry of the surface of Scots pine (Pinus sylvestris L.) modified by friction. Holzforschung, 2012, 66, .	0.9	15
100	Atomic and molecular layer deposition for surface modification. Journal of Solid State Chemistry, 2014, 214, 7-11.	1.4	15
101	The effect of sodium isobutyl xanthate on galena and chalcopyrite flotation in the presence of dithionite ions. Minerals Engineering, 2021, 169, 106985.	1.8	14
102	Hydrophobization of the Man-Made Cellulosic Fibers by Incorporating Plant-Derived Hydrophobic Compounds. ACS Sustainable Chemistry and Engineering, 2021, 9, 4915-4925.	3.2	13
103	Pt-grown carbon nanofibers for detection of hydrogen peroxide. RSC Advances, 2018, 8, 12742-12751.	1.7	12
104	Cellulose-Cyclodextrin Co-Polymer for the Removal of Cyanotoxins on Water Sources. Polymers, 2019, 11, 2075.	2.0	12
105	Non-leaching, Highly Biocompatible Nanocellulose Surfaces That Efficiently Resist Fouling by Bacteria in an Artificial Dermis Model. ACS Applied Bio Materials, 2020, 3, 4095-4108.	2.3	12
106	Fabrication of aerogels from cellulose nanofibril grafted with β-cyclodextrin for capture of water pollutants. Journal of Porous Materials, 2021, 28, 1725-1736.	1.3	12
107	A surface study on adsorption of lignosulphonate on mixed Si3N4î—,Y2O3 powder dispersions. Journal of the European Ceramic Society, 1994, 14, 403-409.	2.8	11
108	Analysing coated powders with XPS. Surface and Interface Analysis, 1991, 17, 663-668.	0.8	10

#	Article	IF	CITATIONS
109	Arrangements of cationic starch of varying hydrophobicity on hydrophilic and hydrophobic surfaces. Journal of Colloid and Interface Science, 2009, 336, 21-29.	5.0	10
110	Hot electron-induced electrochemiluminescence at polyetherimide-carbon black-based electrodes. Electrochimica Acta, 2017, 237, 185-191.	2.6	10
111	Amorphous carbon thin film electrodes with intrinsic Pt-gradient for hydrogen peroxide detection. Electrochimica Acta, 2017, 251, 60-70.	2.6	10
112	Nitrogen plasma surface treatment for improving polar ink adhesion on micro/nanofibrillated cellulose films. Cellulose, 2019, 26, 3845-3857.	2.4	10
113	Controlled diazonium electrodeposition towards a biosensor for C-reactive protein. Sensors International, 2021, 2, 100060.	4.9	10
114	Mild alkaline separation of fiber bundles from eucalyptus bark and their composites with cellulose acetate butyrate. Industrial Crops and Products, 2021, 165, 113436.	2.5	10
115	Surface charge and viscosity of mixed Si3N4î—Y2O3 suspensions containing lignosulphonate. Journal of the European Ceramic Society, 1996, 16, 671-678.	2.8	9
116	Structural Evolution of Gas-Phase Coinage Metal Clusters in Thiolate Self-Assembled Monolayers on Au. Journal of Physical Chemistry C, 2012, 116, 22602-22607.	1.5	9
117	Corona Treatment of Filled Dual-polymer Dispersion Coatings: Surface Properties and Grease Resistance. Polymers and Polymer Composites, 2017, 25, 257-266.	1.0	9
118	Optimizing electric corona treatment for hydroxypropylated starch-based coatings. Carbohydrate Polymers, 2018, 197, 359-365.	5.1	9
119	Single walled carbon nanotube network—Tetrahedral amorphous carbon composite film. Journal of Applied Physics, 2015, 117, 225302.	1.1	8
120	Inkjet ink spreading on polyelectrolyte multilayers deposited on pigment coated paper. Journal of Colloid and Interface Science, 2015, 438, 179-190.	5.0	8
121	UV-ozone patterning of micro-nano fibrillated cellulose (MNFC) with alkylsilane self-assembled monolayers. Cellulose, 2016, 23, 1847-1857.	2.4	8
122	Dehydroabietylamine-Based Cellulose Nanofibril Films: A New Class of Sustainable Biomaterials for Highly Efficient, Broad-Spectrum Antimicrobial Effects. ACS Sustainable Chemistry and Engineering, 2019, 7, 5002-5009.	3.2	8
123	Applicability of the Tougaard ratio D in the analysis of nanometric TiO2 overlayers. Thin Solid Films, 1994, 238, 242-247.	0.8	7
124	Impact of Ag and NO x compounds on the transport of ruthenium in the primary circuit of nuclear power plant in a severe accident. Annals of Nuclear Energy, 2017, 100, 9-19.	0.9	7
125	Development of a $\hat{1}^2$ -cyclodextrin-chitosan polymer as active coating for cellulosic surfaces and capturing of microcystin-LR. Surfaces and Interfaces, 2022, 33, 102192.	1.5	7
126	Effect of Power Density on the Electrochemical Properties of Undoped Amorphous Carbon (a) Thin Films. Electroanalysis, 2019, 31, 746-755.	1.5	6

#	Article	IF	CITATIONS
127	Static SIMS studies of coated TiO2 pigments. Surface and Interface Analysis, 1993, 20, 304-308.	0.8	5
128	Spruce fiber properties after high-temperature thermomechanical pulping (HT-TMP). Holzforschung, 2014, 68, 195-201.	0.9	5
129	Maskless, Highâ€Precision, Persistent, and Extreme Wettingâ€Contrast Patterning in an Environmental Scanning Electron Microscope. Small, 2016, 12, 1847-1853.	5.2	5
130	Simple functionalization of cellulose beads with pre-propargylated chitosan for clickable scaffold substrates. Cellulose, 2021, 28, 6073.	2.4	5
131	Assessing Fireâ€Damage in Historical Papers and Alleviating Damage with Soft Cellulose Nanofibers. Small, 2022, 18, e2105420.	5.2	5
132	Scalable synthesis and functionalization of cobalt nanoparticles for versatile magnetic separation and metal adsorption. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	4
133	Environmentally dependent adsorption of 2,4â€dichlorophenol on celluloseâ€chitosan selfâ€assembled composites. Biopolymers, 2021, 112, e23434.	1.2	4
134	Anomalous dependence of particle size on supersaturation in the preparation of iron nanoparticles from iron pentacarbonyl. Journal of Colloid and Interface Science, 2012, 386, 28-33.	5.0	3
135	Surface study of DWA-wetted TiO2 pigments. Surface and Interface Analysis, 1993, 20, 155-160.	0.8	2
136	Pulping-tailored fiber properties from a novel Brazilian <i>Eucalyptus</i> hybrid. Holzforschung, 2014, 68, 273-282.	0.9	2
137	The physicochemical properties of cellulose surfaces modified with (depolymerised) suberin and suberin fatty acid. Industrial Crops and Products, 2021, 159, 113070.	2.5	2
138	The Effect of Tetrathionate lons on the Surface Chemistry and Flotation Response of Selected sulphide Minerals. Mineral Processing and Extractive Metallurgy Review, 0, , 1-14.	2.6	2
139	Effect of the H2 Annealing on the Electrical Properties of In2O3-SnO2 Thin Films. Journal of Sol-Gel Science and Technology, 2004, 32, 179-183.	1.1	1
140	Low temperature and high quality atomic layer deposition HfO <inf>2</inf> coatings. , 2017, ,		1
141	Hydrothermally induced changes in the properties of MFC and characterization of the low molar mass degradation products. Cellulose, 2019, 26, 8589-8605.	2.4	1
142	Fabrication and characterization of Sb-doped SnO 2 thin films derived from methacrylic acid modified tin(IV)alkoxides. , 2002, 4804, 106.		0
143	Addition of Ascorbic Acid or Purified Kraft Lignin in Pulp Refining: Effects on Chemical Characteristics, Handsheet Properties, and Thermal Stability. BioResources, 2015, 11, .	0.5	0
144	Three-Layered Polyelectrolyte Structures as Inkjet Receptive Coatings: Part 1. Interaction with Dye-based Ink. Journal of Imaging Science and Technology, 2016, 60, 305011-305019.	0.3	0