Dayue Shang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7385881/publications.pdf

Version: 2024-02-01

759233 677142 29 506 12 22 h-index citations g-index papers 29 29 29 474 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Development of a tiered analytical method for forensic investigation of mixed lubricating oil samples. Environmental Forensics, 2022, 23, 511-523.	2.6	6
2	A rapid gas chromatography quadrupole time-of-flight mass spectrometry method for the determination of polycyclic aromatic hydrocarbons and sulfur heterocycles in spilled crude oils. Analytical Methods, 2022, 14, 717-725.	2.7	9
3	Investigating the fate of polycyclic aromatic sulfur heterocycle compounds in spilled oils with a microcosm weathering experiment. Environmental Systems Research, 2022, 11 , .	3.7	5
4	Advancement in oil forensics through the addition of polycyclic aromatic sulfur heterocycles as biomarkers in diagnostic ratios. Journal of Hazardous Materials, 2022, 435, 129027.	12.4	8
5	Long-term spatial and temporal trends, and source apportionment of polycyclic aromatic compounds in the Athabasca Oil Sands Region. Environmental Pollution, 2021, 268, 115351.	7.5	15
6	Dioctyl Sodium Sulfosuccinate as a Potential Endocrine Disruptor of Thyroid Hormone Activity in American bullfrog, Rana (Lithobates) catesbeiana, Tadpoles. Archives of Environmental Contamination and Toxicology, 2021, 80, 726-734.	4.1	8
7	Assessing diatom-mediated fatty acids in intertidal biofilm: a new conservation concern. Environmental Systems Research, 2021, 10, .	3.7	6
8	A practical study of CITES wood species identification by untargeted DART/QTOF, GC/QTOF and LC/QTOF together with machine learning processes and statistical analysis. Environmental Advances, 2021, 5, 100089.	4.8	5
9	Trace analysis of resin acids in surface waters by direct injection liquid chromatography time of flight mass spectrometry and tripleÂquadrupole mass spectrometry. Journal of Chromatography A, 2021, 1656, 462558.	3.7	3
10	Ultra trace simultaneous determination of 50 polycyclic aromatic hydrocarbons in biota using pMRM GC-MS/MS. Environmental Forensics, 2020, 21, 87-98.	2.6	8
11	Chemotyping and identification of protected Dalbergiatimber using gas chromatography quadrupole time of flight mass spectrometry. Journal of Chromatography A, 2020, 1615, 460775.	3.7	7
12	Enhanced analysis of weathered crude oils by gas chromatography-flame ionization detection, gas chromatography-mass spectrometry diagnostic ratios, and multivariate statistics. Journal of Chromatography A, 2020, 1634, 461689.	3.7	16
13	Tiered approach to long-term weathered lubricating oil analysis: GC/FID, GC/MS diagnostic ratios, and multivariate statistics. Analytical Methods, 2020, 12, 5236-5246.	2.7	12
14	Polycyclic aromatic compounds (PACs) in the Canadian environment: A review of sampling techniques, strategies and instrumentation. Environmental Pollution, 2020, 266, 114988.	7.5	26
15	Diagnostic Ratio Analysis: A New Concept for the Tracking of Oil Sands Process-Affected Water Naphthenic Acids and Other Water-Soluble Organics in Surface Waters. Environmental Science & Emp; Technology, 2020, 54, 2228-2243.	10.0	3
16	Enhanced marine monitoring and toxicity study of oil spill dispersants including Corexit EC9500A in the presence of diluted bitumen. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2020, 55, 788-799.	1.7	3
17	Trace level analysis of three glycol ethers in wood stains by APCI-LC-MS/MS. Analytical Methods, 2019, 11, 3671-3677.	2.7	O
18	Improved oil spill dispersant monitoring in seawater using dual tracers: Dioctyl and monoctyl sulfosuccinates sourced from corexit EC9500A. Journal of Chromatography A, 2019, 1598, 113-121.	3.7	7

#	Article	IF	CITATIONS
19	Evaluation of Gene Bioindicators in the Liver and Caudal Fin of Juvenile Pacific Coho Salmon in Response to Low Sulfur Marine Diesel Seawater-Accommodated Fraction Exposure. Environmental Science &	10.0	12
20	Acute toxicity of Corexit EC9500A and assessment of dioctyl sulfosuccinate as an indicator for monitoring four oil dispersants applied to diluted bitumen. Environmental Toxicology and Chemistry, 2018, 37, 1309-1319.	4.3	7
21	Determination of polycyclic aromatic hydrocarbons in surface water using simplified liquid–liquid micro-extraction and pseudo-MRM GC/MS/MS. Analytical Methods, 2018, 10, 405-416.	2.7	22
22	A rapid gas chromatography tandem mass spectrometry method for the determination of 50 PAHs for application in a marine environment. Analytical Methods, 2018, 10, 5559-5570.	2.7	17
23	A traceable reference for direct comparative assessment of total naphthenic acid concentrations in commercial and acid extractable organic mixtures derived from oil sands process water. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2017, 52, 274-280.	1.7	11
24	Specificity of high resolution analysis of naphthenic acids in aqueous environmental matrices. Analytical Methods, 2016, 8, 6764-6773.	2.7	15
25	Sensitivity of walleye (Sander vitreus) and fathead minnow (Pimephales promelas) early-life stages to naphthenic acid fraction components extracted from fresh oil sands process-affected waters. Environmental Pollution, 2015, 207, 59-67.	7.5	39
26	Rapid and Sensitive LC/MS/MS Direct Injection Method for the Determination of Trace Level Corexit EC9500A Oil Dispersant in Seawater. Environmental Forensics, 2015, 16, 333-343.	2.6	5
27	Trace analysis of total naphthenic acids in aqueous environmental matrices by liquid chromatography/mass spectrometry-quadrupole time of flight mass spectrometry direct injection. Journal of Chromatography A, 2015, 1405, 49-71.	3.7	38
28	Toxicity of naphthenic acid fraction components extracted from fresh and aged oil sands process-affected waters, and commercial naphthenic acid mixtures, to fathead minnow (Pimephales) Tj ETQq0 () 0 ngBT/C)ver loc k 10 Tf
29	Rapid and sensitive method for the determination of polycyclic aromatic hydrocarbons in soils using pseudo multiple reaction monitoring gas chromatography/tandem mass spectrometry. Journal of Chromatography A, 2014, 1334, 118-125.	3.7	86