Jean Ricardo SimÃues Vitule

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/738555/publications.pdf

Version: 2024-02-01

113 papers

3,840 citations

126858 33 h-index 54 g-index

118 all docs

118 docs citations

118 times ranked

4009 citing authors

#	Article	IF	CITATIONS
1	Introduction of nonâ€native freshwater fish can certainly be bad. Fish and Fisheries, 2009, 10, 98-108.	2.7	316
2	Neotropical freshwater fishes imperilled by unsustainable policies. Fish and Fisheries, 2017, 18, 1119-1133.	2.7	151
3	Homogenization of freshwater fish faunas after the elimination of a natural barrier by a dam in Neotropics. Diversity and Distributions, 2012, 18, 111-120.	1.9	145
4	A Serious New Threat to Brazilian Freshwater Ecosystems: The Naturalization of Nonnative Fish by Decree. Conservation Letters, 2014, 7, 55-60.	2.8	118
5	Protected areas: A focus on Brazilian freshwater biodiversity. Diversity and Distributions, 2019, 25, 442-448.	1.9	103
6	Removing the abyss between conservation science and policy decisions in Brazil. Biodiversity and Conservation, 2017, 26, 1745-1752.	1.2	102
7	Thresholds of freshwater biodiversity in response to riparian vegetation loss in the Neotropical region. Journal of Applied Ecology, 2020, 57, 1391-1402.	1.9	100
8	Feeding ecology of fishes: an overview of worldwide publications. Reviews in Fish Biology and Fisheries, 2012, 22, 915-929.	2.4	98
9	Invasive aquatic pets: failed policies increase risks of harmful invasions. Biodiversity and Conservation, 2018, 27, 3037-3046.	1.2	93
10	Introduction of the African Catfish Clarias gariepinus (BURCHELL, 1822) into Southern Brazil. Biological Invasions, 2006, 8, 677-681.	1.2	91
11	Muscle water control in crustaceans and fishes as a function of habitat, osmoregulatory capacity, and degree of euryhalinity. Comparative Biochemistry and Physiology Part A, Molecular & Emp; Integrative Physiology, 2008, 149, 435-446.	0.8	87
12	Revisiting the Potential Conservation Value of Nonâ€Native Species. Conservation Biology, 2012, 26, 1153-1155.	2.4	81
13	Homogenization dynamics of the fish assemblages in Neotropical reservoirs: comparing the roles of introduced species and their vectors. Hydrobiologia, 2015, 746, 327-347.	1.0	81
14	A call for an end to calls for the end of invasion biology. Oikos, 2014, 123, 408-413.	1.2	79
15	Non-native species and invasion biology in a megadiverse country: scientometric analysis and ecological interactions in Brazil. Biological Invasions, 2016, 18, 3713-3725.	1.2	77
16	Structuring evidence for invasional meltdown: broad support but with biases and gaps. Biological Invasions, 2018, 20, 923-936.	1.2	77
17	Climate change as a driver of biotic homogenization of woody plants in the Atlantic Forest. Global Ecology and Biogeography, 2018, 27, 298-309.	2.7	72
18	Comparison of the diet of Alouatta caraya (Primates: Atelidae) between a riparian island and mainland on the Upper Parana River, southern Brazil. Revista Brasileira De Zoologia, 2008, 25, 419-426.	0.5	64

#	Article	IF	CITATIONS
19	Shark Mislabeling Threatens Biodiversity. Science, 2013, 340, 923-923.	6.0	63
20	A review of <i>Clarias gariepinus</i> invasions in Brazil and South Africa. Journal of Fish Biology, 2016, 89, 386-402.	0.7	58
21	We need better understanding about functional diversity and vulnerability of tropical freshwater fishes. Biodiversity and Conservation, 2017, 26, 757-762.	1.2	51
22	How to avoid fish introductions in Brazil: education and information as alternatives. Natureza A Conservacao, 2015, 13, 123-132.	2.5	48
23	Energy by Microbial Fuel Cells: Scientometric global synthesis and challenges. Renewable and Sustainable Energy Reviews, 2016, 65, 832-840.	8.2	47
24	Intra-country introductions unraveling global hotspots of alien fish species. Biodiversity and Conservation, 2019, 28, 3037-3043.	1.2	46
25	The Use of Barriers to Limit the Spread of Aquatic Invasive Animal Species: A Global Review. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	46
26	Non-native fish invasions of a Neotropical ecoregion with high endemism: a review of the Igua \tilde{A} §u River. Aquatic Invasions, 2016, 11, 209-223.	0.6	46
27	The "Tilapia Law―encouraging non-native fish threatens Amazonian River basins. Biodiversity and Conservation, 2017, 26, 243-246.	1.2	45
28	Megadiverse developing countries face huge risks from invasives. Trends in Ecology and Evolution, 2012, 27, 2-3.	4.2	44
29	A network metaâ€analysis of threats to South American fish biodiversity. Fish and Fisheries, 2019, 20, 620-639.	2.7	44
30	INVASIVESNET towards an International Association for Open Knowledge on Invasive Alien Species. Management of Biological Invasions, 2016, 7, 131-139.	0.5	41
31	Nonnative Fish to Control <i>Aedes</i> Mosquitoes: A Controversial, Harmful Tool. BioScience, 2017, 67, 84-90.	2.2	39
32	Aquaculture expansion in Brazilian freshwaters against the Aichi Biodiversity Targets. Ambio, 2018, 47, 427-440.	2.8	37
33	Water diversion in Brazil threatens biodiversity. Ambio, 2020, 49, 165-172.	2.8	37
34	Large-scale Degradation of the Tocantins-Araguaia River Basin. Environmental Management, 2021, 68, 445-452.	1.2	37
35	Darwin's hypotheses to explain colonization trends: evidence from a <i>quasi</i> and a new conceptual model. Diversity and Distributions, 2015, 21, 583-594.	1.9	36
36	Status and recommendations for sustainable freshwater aquaculture in Brazil. Reviews in Aquaculture, 2020, 12, 1495-1517.	4.6	36

#	Article	IF	CITATIONS
37	A multibiomarker evaluation of urban, industrial, and agricultural exposure of small characins in a large freshwater basin in southern Brazil. Environmental Science and Pollution Research, 2015, 22, 13263-13277.	2.7	35
38	Physiological tools to predict invasiveness and spread via estuarine bridges: tolerance of Brazilian native and worldwide introduced freshwater fishes to increased salinity. Marine and Freshwater Research, 2014, 65, 425.	0.7	33
39	Food web changes associated with drought and invasive species in a tropical semiarid reservoir. Hydrobiologia, 2018, 817, 475-489.	1.0	30
40	The largemouth bass Micropterus salmoides (Lacep \tilde{A} "de, 1802): impacts of a powerful freshwater fish predator outside of its native range. Reviews in Fish Biology and Fisheries, 2019, 29, 639-652.	2.4	30
41	Fisheries and biotic homogenization of freshwater fish in the Brazilian semiarid region. Hydrobiologia, 2020, 847, 3877-3895.	1.0	29
42	Misguided strategy for mosquito control. Science, 2016, 351, 675-675.	6.0	28
43	Extralimital introductions of Salminus brasiliensis (Cuvier, 1816) (Teleostei, Characidae) for sport fishing purposes: a growing challenge for the conservation of biodiversity in neotropical aquatic ecosystems. BioInvasions Records, 2014, 3, 291-296.	0.4	28
44	"Buying a Pig in a Poke†The Problem of Elasmobranch Meat Consumption in Southern Brazil. Ethnobiology Letters, 2015, 6, 196-202.	0.5	27
45	Traditional scientific data vs. uncoordinated citizen science effort: A review of the current status and comparison of data on avifauna in Southern Brazil. PLoS ONE, 2017, 12, e0188819.	1.1	26
46	All the colors of the world: biotic homogenization-differentiation dynamics of freshwater fish communities on demand of the Brazilian aquarium trade. Hydrobiologia, 2020, 847, 3897-3915.	1.0	26
47	Brazil's drought: Protect biodiversity. Science, 2015, 347, 1427-1428.	6.0	25
48	Comment on â€~Fish biodiversity and conservation in South America by Reis <i>et al.</i> (2016)'. Journal of Fish Biology, 2017, 90, 1182-1190.	0.7	24
49	Small size today, aquarium dumping tomorrow: sales of juvenile non-native large fish as an important threat in Brazil. Neotropical Ichthyology, 2017, 15, .	0.5	23
50	Fishes of the Atlantic Rain Forest Streams: Ecological Patterns and Conservation. , 0, , .		21
51	Tilapia farming threatens Brazil's waters. Science, 2021, 371, 356-356.	6.0	21
52	The Silent Threat of Non-native Fish in the Amazon: ANNF Database and Review. Frontiers in Ecology and Evolution, $2021, 9, .$	1.1	21
53	Aquicultura, PolÃtica e Meio Ambiente no Brasil: Novas Propostas e Velhos EquÃvocos. Natureza A Conservacao, 2012, 10, 88-91.	2.5	21
54	Human-Induced Landscape Changes Homogenize Atlantic Forest Bird Assemblages through Nested Species Loss. PLoS ONE, 2016, 11, e0147058.	1.1	20

#	Article	IF	Citations
55	Brazil naturalizes non-native species. Science, 2018, 361, 139-139.	6.0	19
56	First records of the European catfish, Silurus glanis Linnaeus, 1758 in the Americas (Brazil). Biolnvasions Records, 2014, 3, 117-122.	0.4	19
57	Aquarium Industry Threatens Biodiversity. Science, 2013, 341, 457-457.	6.0	18
58	Too many mining disasters in Brazil. Nature, 2016, 531, 580-580.	13.7	18
59	Feeding ecology of Rivulus luelingi (Aplocheiloidei: Rivulidae) in a Coastal Atlantic Rainforest stream, southern Brazil. Neotropical Ichthyology, 2010, 8, 813-818.	0.5	17
60	Preserve Brazil's aquatic biodiversity. Nature, 2012, 485, 309-309.	13.7	17
61	Scale-dependent patterns of fish faunal homogenization in Neotropical reservoirs. Hydrobiologia, 2020, 847, 3759-3772.	1.0	17
62	Preface: aquatic homogenoceneâ€"understanding the era of biological re-shuffling in aquatic ecosystems. Hydrobiologia, 2020, 847, 3705-3709.	1.0	17
63	Negative impacts of mining on Neotropical freshwater fishes. Neotropical Ichthyology, 2021, 19, .	0.5	17
64	Alterações no Código Florestal Brasileiro Favorecerão Espécies Não-Nativas de Peixes de Ãgua Doce. Natureza A Conservacao, 2011, 9, 121-124.	2.5	17
65	Biotic resistance by snails and fish to an exotic invasive aquatic plant. Freshwater Biology, 2017, 62, 1266-1275.	1.2	16
66	Imminent threat of the predator fish invasion Salminus brasiliensis in a Neotropical ecoregion: eco-vandalism masked as an environmental project. Perspectives in Ecology and Conservation, 2017, 15, 132-135.	1.0	15
67	The same old mistakes in aquaculture: the newly-available striped catfish Pangasianodon hypophthalmus is on its way to putting Brazilian freshwater ecosystems at risk. Biodiversity and Conservation, 2018, 27, 3545-3558.	1.2	15
68	Biology, ecology and biogeography of the South American silver croaker, an important Neotropical fish species in South America. Reviews in Fish Biology and Fisheries, 2018, 28, 693-714.	2.4	14
69	Benthification, biotic homogenization behind the trophic downgrading in altered ecosystems. Ecosphere, 2019, 10, e02757.	1.0	14
70	Invasional meltdown: an experimental test and a framework to distinguish synergistic, additive, and antagonistic effects. Hydrobiologia, 2020, 847, 1603-1618.	1.0	14
71	Monitor Brazil's fish sampling closely. Nature, 2014, 513, 315-315.	13.7	13
72	Aquaculture facilities drive the introduction and establishment of non-native Oreochromis niloticus populations in Neotropical streams. Hydrobiologia, 2021, 848, 1955-1966.	1.0	13

#	Article	IF	Citations
73	Introdução de espécies não nativas e invasões biológicas. Estudos De Biologia, 2012, 34, .	0.1	12
74	Unconventional fishing for large sharks in the State of Paran $ ilde{A}_i$, southern Brazil: a note of concern. Journal of Applied Ichthyology, 2011, 27, 1108-1111.	0.3	11
75	Occurrence of the alien invasive loach <i>Misgurnus anguillicaudatus</i> in the Iguaçu River basin in southern Brazil: a note of concern. Journal of Applied Ichthyology, 2013, 29, 257-259.	0.3	11
76	Societal perception, impacts and judgment values about invasive freshwater stingrays. Biological Invasions, 2019, 21, 3593-3606.	1.2	11
77	Population structure and reproduction of Deuterodon langei travassos, 1957 (Teleostei, Characidae) in a neotropical stream basin from the Atlantic Forest, Southern Brazil. Brazilian Archives of Biology and Technology, 2008, 51, 1187-1198.	0.5	11
78	Molecular data reveal a diverse <i>Astyanax</i> species complex in the upper Iguaçu River. Journal of Fish Biology, 2009, 75, 2357-2362.	0.7	10
79	Feeding ecology of fish in a coastal river of the Atlantic Rain Forest. Environmental Biology of Fishes, 2013, 96, 1029-1044.	0.4	10
80	Dams, politics and drought threat: the march of folly in Brazilian freshwaters ecosystems. Natureza A Conservacao, 2015, 13, 196-198.	2.5	10
81	Use of food resources and resource partitioning among five syntopic species of Hypostomus (Teleostei: Loricariidae) in an Atlantic Forest river in southern Brazil. Zoologia, 2016, 33, .	0.5	10
82	Assessing the impacts of the introduced channel catfish Ictalurus punctatus using the comparative functional response approach. Fisheries Management and Ecology, 2019, 26, 570-577.	1.0	10
83	Metazoan parasites of Micropterus salmoides (Lac $ ilde{A}$ ©p $ ilde{A}$ "de 1802) (Perciformes, Centrarchidae): a review with evidences of spillover and spillback. Parasitology Research, 2018, 117, 1671-1681.	0.6	9
84	Evaluation of three capture techniques for invasive <i>Micropterus salmoides</i> (Lac \tilde{A} ©p \tilde{A} "de, 1802) in a Neotropical reservoir: implications for population control and management. Journal of Applied Ichthyology, 2015, 31, 1127-1129.	0.3	8
85	Feeding ecology and resource sharing patterns between <i>Stellifer rastrifer</i> (Jordan, 1889) and <i>S.Âbrasiliensis</i> (Schultz, 1945) (Perciformes: Sciaenidae) along the coasts of ParanA; and Santa Catarina, Brazil. Journal of Applied Ichthyology, 2015, 31, 479-486.	0.3	8
86	Brazil's Native Vegetation Protection Law Jeopardizes Wetland Conservation: A Comment on Maltchik et al Environmental Conservation, 2019, 46, 121-123.	0.7	8
87	Biotic differentiation in headwater creeks after the massive introduction of non-native freshwater aquarium fish in the ParaÃba do Sul River basin, Brazil. Neotropical Ichthyology, 2021, 19, .	0.5	8
88	Biodiversity: is there light for native fish assemblages at the end of the Anthropocene tunnel?. Journal of Fish Biology, 2016, 89, 48-49.	0.7	7
89	Brazilian wetlands on the brink. Biodiversity and Conservation, 2019, 28, 255-257.	1.2	7
90	Good intentions, but bad effects: Environmental laws protects nonâ€native ichthyofauna in Brazil. Fisheries Management and Ecology, 2021, 28, 14-17.	1.0	7

#	Article	IF	CITATIONS
91	Gastric lavage for dietary studies of small fishes: Efficiency, survival and applicability. Acta Ichthyologica Et Piscatoria, 2017, 47, 97-100.	0.3	7
92	Community stability and seasonal biotic homogenisation emphasize the effect of the invasive tropical tanner grass on macrophytes from a highly dynamic neotropical tidal river. Aquatic Sciences, 2022, 84, 30.	0.6	7
93	Non-native Species Introductions, Invasions, and Biotic Homogenization in the Atlantic Forest. , 2021, , 269-295.		6
94	Population structure and reproduction of Mimagoniates microlepis with a new hypothesis of ontogenetic migration: implications for stream fish conservation in the Neotropics. Environmental Biology of Fishes, 2013, 96, 21-31.	0.4	5
95	Looking through the predator's eyes: another perspective in naÃ⁻veté theory. Biological Invasions, 2019, 21, 2577-2588.	1.2	5
96	Differential use of artificial habitats by native and non-native fish species in Neotropical reservoirs. Hydrobiologia, 2021, 848, 2355-2367.	1.0	5
97	Effects of body size on the diet of Rivulus haraldsiolii (Aplocheiloidei: Rivulidae) in a coastal Atlantic Rainforest island stream, southern Brazil. Biotemas, 2010, , 59-64.	0.2	4
98	Diet and resource sharing by two Pimelodidae species in a Southeastern Brazilian reservoir. Biota Neotropica, 2019, 19, .	0.2	4
99	Occurrence of non-native species in a subtropical coastal River, in Southern Brazil. Acta Limnologica Brasiliensia, 0, 33, .	0.4	4
100	Invasive Species in Streams and Rivers. , 2022, , 436-452.		4
101	Ausência do mexilhão dourado invasor em um reservatório perto de Curitiba, Brasil: um possÃvel caso de invasão malsucedida. Neotropical Biology and Conservation, 2018, 13, .	0.4	3
102	PREDATION ON NATIVE ANURANS BY INVASIVE VERTEBRATES IN THE ATLANTIC RAIN FOREST, BRAZIL. Oecologia Australis, 2016, 20, 391-395.	0.1	3
103	Effects of Mining on Surface Waterâ€"Case Studies. , 2022, , 210-224.		3
104	Age, growth, and ontogenetic variation in the sagitta otolith of Opsanus beta (Goode & Ean,) Tj ETQq0 0 0 0 Research, 2022, 50, 124-134.	rgBT /Over 0.2	rlock 10 Tf 5 3
105	The genetic characteristics of invasive Largemouth Bass in southern Brazil. Journal of Applied Ichthyology, 2020, 36, 46-54.	0.3	2
106	A checklist of aquatic macrophytes of the Guaraguaçu river basin reveals a target for conservation in the Atlantic rainforest. Acta Scientiarum - Biological Sciences, 0, 43, e50542.	0.3	2
107	New conservation opportunities: Using citizen science in monitoring nonâ€native species in Neotropical region. Journal of Applied Ichthyology, 2021, 37, 779-785.	0.3	2
108	Length-weight relationships of native and non-native fishes in a subtropical coastal river of the Atlantic Rain Forest. Acta Limnologica Brasiliensia, 0, 34, .	0.4	2

#	Article	IF	CITATIONS
109	Comparison of visual census and underwater video for fish sampling in Neotropical reservoirs. Environmental Biology of Fishes, 2020, 103, 1269-1277.	0.4	1
110	Homogeneiza $ ilde{A}$ S $ ilde{A}$ £o bi $ ilde{A}$ ³tica: Misturando organismos em um mundo pequeno e globalizado. Estudos De Biologia, 2012, 34, .	0.1	1
111	Use of osmoregulatory ability to predict invasiveness of the Indo-Pacific swimming crab Charybdis hellerii (A. Milne-Edwards, 1867) an invader in Southern Brazil. Nauplius, 0, 27, .	0.3	1
112	Prey selectivity of the invasive largemouth bass towards native and non-native prey: an experimental approach. Neotropical Ichthyology, 2022, 20, .	0.5	1
113	How broad-scale analyses can hide the importance of small areas for conservation. Biodiversity and Conservation, 0 , , 1 .	1.2	0