Magdalena Scheck Wenderoth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7384968/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crustal memory and basin evolution in the Central European Basin System—new insights from a 3D structural model. Tectonophysics, 2005, 397, 143-165.	0.9	126
2	Severity and timing of Cenozoic exhumation in the southwestern Barents Sea. Journal of the Geological Society, 2006, 163, 761-774.	0.9	93
3	Different modes of the Late Cretaceous–Early Tertiary inversion in the North German and Polish basins. International Journal of Earth Sciences, 2005, 94, 782-798.	0.9	87
4	Deep structure of the western South African passive margin — Results of a combined approach of seismic, gravity and isostatic investigations. Tectonophysics, 2009, 470, 57-70.	0.9	79
5	The long-term evolution of the Congo deep-sea fan: A basin-wide view of the interaction between a giant submarine fan and a mature passive margin (ZaiAngo project). Tectonophysics, 2009, 470, 42-56.	0.9	71
6	Paleostress states at the south-western margin of the Central European Basin System — Application of fault-slip analysis to unravel a polyphase deformation pattern. Tectonophysics, 2009, 470, 129-146.	0.9	62
7	The deep thermal field of the Upper Rhine Graben. Tectonophysics, 2017, 694, 114-129.	0.9	62
8	Modelling of fractured carbonate reservoirs: outline of a novel technique via a case study from the Molasse Basin, southern Bavaria, Germany. Environmental Earth Sciences, 2013, 70, 3585-3602.	1.3	61
9	The Glueckstadt Graben, a sedimentary record between the North and Baltic Sea in north Central Europe. Tectonophysics, 2005, 397, 113-126.	0.9	58
10	A lithosphere-scale structural model of the Barents Sea and Kara Sea region. Solid Earth, 2015, 6, 153-172.	1.2	50
11	The transition from the continent to the ocean: a deeper view on the Norwegian margin. Journal of the Geological Society, 2007, 164, 855-868.	0.9	49
12	Basin evolution of the northern part of the Northeast German Basin — Insights from a 3D structural model. Tectonophysics, 2007, 437, 1-16.	0.9	47
13	Tectonic subsidence history and thermal evolution of the Orange Basin. Marine and Petroleum Geology, 2010, 27, 565-584.	1.5	47
14	3D lithosphere-scale density model of the Central European Basin System and adjacent areas. Tectonophysics, 2013, 601, 53-77.	0.9	47
15	The Kenya rift revisited: insights into lithospheric strength through data-driven 3-D gravity and thermal modelling. Solid Earth, 2017, 8, 45-81.	1.2	47
16	Models of heat transport in the Central European Basin System: Effective mechanisms at different scales. Marine and Petroleum Geology, 2014, 55, 315-331.	1.5	41
17	Geothermal energy in sedimentary basins: What we can learn from regional numerical models. Chemie Der Erde, 2010, 70, 33-46.	0.8	40
18	Influence of fluid flow on the regional thermal field: results from 3D numerical modelling for the area of Brandenburg (North German Basin). Environmental Earth Sciences, 2013, 70, 3523-3544.	1.3	39

#	Article	IF	CITATIONS
19	How warm are passive continental margins? A 3-D lithosphere-scale study from the Norwegian margin. Geology, 2008, 36, 419.	2.0	37
20	Sensitivity of 3D thermal models to the choice of boundary conditions and thermal properties: a case study for the area of Brandenburg (NE German Basin). Environmental Earth Sciences, 2012, 67, 1695-1711.	1.3	37
21	Structural features of the Southwest African continental margin according to results of lithosphere-scale 3D gravity and thermal modelling. Tectonophysics, 2013, 604, 104-121.	0.9	37
22	Assessment of the present-day thermal field (NE German Basin)—Inferences from 3D modelling. Chemie Der Erde, 2010, 70, 47-62.	0.8	36
23	Salt as a 3D element in structural modeling — Example from the Central European Basin System. Tectonophysics, 2013, 591, 62-82.	0.9	35
24	Geothermal energy systems: research perspective for domestic energy provision. Environmental Earth Sciences, 2013, 70, 3927-3933.	1.3	35
25	Numerical Investigation of Thermoelastic Effects on Fault Slip Tendency during Injection and Production of Geothermal Fluids. Energy Procedia, 2015, 76, 311-320.	1.8	34
26	Lithospheric strength and elastic thickness of the Barents Sea and Kara Sea region. Tectonophysics, 2016, 691, 120-132.	0.9	34
27	Structure and evolution of the Glueckstadt Graben due to salt movements. International Journal of Earth Sciences, 2005, 94, 799-814.	0.9	33
28	Impact of single inclined faults on the fluid flow and heat transport: results from 3-D finite element simulations. Environmental Earth Sciences, 2013, 70, 3603-3618.	1.3	33
29	Colorado Basin 3D structure and evolution, Argentine passive margin. Tectonophysics, 2013, 604, 264-279.	0.9	33
30	Tectonic implications of the lithospheric structure across the Barents and Kara shelves. Geological Society Special Publication, 2018, 460, 285-314.	0.8	33
31	Density contrasts in the upper mantle and lower crust across the continent-ocean transition: constraints from 3-D gravity modelling at the Norwegian margin. Geophysical Journal International, 2009, 179, 536-548.	1.0	32
32	Deep 3D thermal modelling for the city of Berlin (Germany). Environmental Earth Sciences, 2013, 70, 3545-3566.	1.3	32
33	A multi-stage 3-D stress field modelling approach exemplified in the Bavarian Molasse Basin. Solid Earth, 2016, 7, 1365-1382.	1.2	32
34	Characterization of main heat transport processes in the Northeast German Basin: Constraints from 3-D numerical models. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	1.0	31
35	Deep Control on Shallow Heat in Sedimentary Basins. Energy Procedia, 2013, 40, 266-275.	1.8	30
36	Why intracontinental basins subside longer: 3â€Ð feedback effects of lithospheric cooling and sedimentation on the flexural strength of the lithosphere. Journal of Geophysical Research: Solid Earth, 2016, 121, 3742-3761.	1.4	29

#	Article	IF	CITATIONS
37	Thermo-poroelastic numerical modelling for enhanced geothermal system performance: Case study of the Groğ Schönebeck reservoir. Tectonophysics, 2016, 684, 119-130.	0.9	29
38	Influence of major fault zones on 3-D coupled fluid and heat transport for the Brandenburg region (NE German Basin). Geothermal Energy Science, 2014, 2, 1-20.	1.1	29
39	3D structural model of the Polish Basin. Tectonophysics, 2005, 397, 73-91.	0.9	28
40	Crustal structure beneath the Orange Basin, South Africa. South African Journal of Geology, 2007, 110, 249-260.	0.6	25
41	Controls on the deep thermal field: implications from 3-D numerical simulations for the geothermal research site Groß Schönebeck. Environmental Earth Sciences, 2013, 70, 3619-3642.	1.3	25
42	Reconstruction of the southwestern African continental margin by backward modeling. Marine and Petroleum Geology, 2015, 67, 544-555.	1.5	25
43	A 3D gravity and thermal model for the Barents Sea and Kara Sea. Tectonophysics, 2016, 684, 131-147.	0.9	25
44	The origin of deep geothermal anomalies in the German Molasse Basin: results from 3D numerical models of coupled fluid flow and heat transport. Geothermal Energy, 2017, 5, .	0.9	24
45	3D coupled fluid and heat transport simulations of the Northeast German Basin and their sensitivity to the spatial discretization: different sensitivities for different mechanisms of heat transport. Environmental Earth Sciences, 2013, 70, 3643-3659.	1.3	23
46	3D reconstruction of salt movements within the deepest post-Permian structure of the Central European Basin System - the Glueckstadt Graben. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2006, 85, 181-196.	0.6	22
47	3D data-derived lithospheric structure of the Central Andes and its implications for deformation: Insights from gravity and geodynamic modelling. Tectonophysics, 2019, 766, 453-468.	0.9	21
48	Constraints on the tectonic evolution of the Central European Basin System revealed by seismic reflection profiles from Northern Germany. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2005, 84, 389-401.	0.6	19
49	Influence of the Main Border Faults on the 3D Hydraulic Field of the Central Upper Rhine Graben. Geofluids, 2019, 2019, 1-21.	0.3	19
50	Gravity signals from the lithosphere in the Central European Basin System. Tectonophysics, 2007, 429, 133-163.	0.9	17
51	Paleostress field reconstruction in the Oslo region. Marine and Petroleum Geology, 2010, 27, 682-708.	1.5	17
52	Deep structure of the Argentine margin inferred from 3D gravity and temperature modelling, Colorado Basin. Tectonophysics, 2016, 676, 198-210.	0.9	17
53	3D crustal stress state of Germany according to a data-calibrated geomechanical model. Solid Earth, 2021, 12, 1777-1799.	1.2	17
54	Gas Hydrate Stability Zone of the Barents Sea and Kara Sea Region. Energy Procedia, 2016, 97, 302-309.	1.8	16

#	Article	IF	CITATIONS
55	The 3D conductive thermal field of the North Alpine Foreland Basin: influence of the deep structure and the adjacent European Alps. Geothermal Energy, 2015, 3, .	0.9	14
56	Far field poroelastic response of geothermal reservoirs to hydraulic stimulation treatment: Theory and application at the Groß Schönebeck geothermal research facility. International Journal of Rock Mechanics and Minings Sciences, 2018, 110, 316-327.	2.6	14
57	The 3D thermal field across the Alpine orogen and its forelands and the relation to seismicity. Global and Planetary Change, 2020, 193, 103288.	1.6	14
58	The deep geothermal potential of the Berlin area. Environmental Earth Sciences, 2013, 70, 3567-3584.	1.3	13
59	Density distribution across the Alpine lithosphere constrained by 3-D gravity modelling and relation to seismicity and deformation. Solid Earth, 2019, 10, 2073-2088.	1.2	13
60	The deep thermal field of the Glueckstadt Graben. Environmental Earth Sciences, 2013, 70, 3505-3522.	1.3	12
61	The deep structure of the South Atlantic Kwanza Basin — Insights from 3D structural and gravimetric modelling. Tectonophysics, 2013, 604, 139-152.	0.9	12
62	Assessment of the isostatic state and the load distribution of the European Molasse basin by means of lithospheric-scale 3D structural and 3D gravity modelling. International Journal of Earth Sciences, 2015, 104, 1405-1424.	0.9	12
63	Variability of the geothermal gradient across two differently aged magma-rich continental rifted margins of the Atlantic Ocean: the Southwest African and the Norwegian margins. Solid Earth, 2018, 9, 139-158.	1.2	12
64	Lithospheric density structure of the southern Central Andes constrained by 3D data-integrative gravity modelling. International Journal of Earth Sciences, 2021, 110, 2333-2359.	0.9	12
65	Deep vs. shallow controlling factors of the crustal thermal field – insights from 3D modelling of the <scp>B</scp> eaufortâ€ <scp>M</scp> ackenzie <scp>B</scp> asin (<scp>A</scp> rctic) Tj ETQq1 1 0.784314	rgBiT /Ove	erlock 10 Tf 3
66	Backward modelling of the subsidence evolution of the Colorado Basin, offshore Argentina and its relation to the evolution of the conjugate Orange Basin, offshore SW Africa. Tectonophysics, 2017, 716, 168-181.	0.9	11
67	Crustal Structure of the Andean Foreland in Northern Argentina: Results From Dataâ€Integrative Threeâ€Dimensional Density Modeling. Journal of Geophysical Research: Solid Earth, 2018, 123, 1875-1903.	1.4	11
68	3â€Ð Modeling of Vertical Gravity Gradients and the Delimitation of Tectonic Boundaries: The Caribbean Oceanic Domain as a Case Study. Geochemistry, Geophysics, Geosystems, 2019, 20, 5371-5393.	1.0	11
69	Distribution of Temperature and Strength in the Central Andean Lithosphere and Its Relationship to Seismicity and Active Deformation. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021231.	1.4	11
70	The Glueckstadt Graben of the North-German Basin: new insights into the structure from 3D and 2D gravity analyses. International Journal of Earth Sciences, 2008, 97, 915-930.	0.9	10
71	Regional-scale structural role of Permian salt within the Central European Basin System. Geological Society Special Publication, 2012, 363, 409-430.	0.8	10
72	A crust-scale 3D structural model of the Beaufort-Mackenzie Basin (Arctic Canada). Tectonophysics, 2013, 591, 30-51.	0.9	10

#	Article	IF	CITATIONS
73	The Effects of Regional Fluid Flow on Deep Temperatures (Hesse, Germany). Energies, 2019, 12, 2081.	1.6	10
74	Longâ€Term Lithospheric Strength and Upperâ€Plate Seismicity in the Southern Central Andes, 29°–39°S. Geochemistry, Geophysics, Geosystems, 2022, 23, .	1.0	10
75	Hydro-Mechanical Evolution of Transport Properties in Porous Media: Constraints for Numerical Simulations. Transport in Porous Media, 2015, 110, 409-428.	1.2	9
76	Crustâ€scale 3D model of the <scp>W</scp> estern <scp>B</scp> redasdorp <scp>B</scp> asin (<scp>S</scp> outhern <scp>S</scp> outh <scp>A</scp> frica): dataâ€based insights from combined isostatic and 3D gravity modelling. Basin Research, 2015, 27, 125-151.	1.3	9
77	3D gravity modelling of Colorado and Claromec \tilde{A}^3 basins: new evidences for the evolution of the southwestern margin of Gondwana. International Journal of Earth Sciences, 2020, 110, 2295.	0.9	9
78	Salt Dynamics. , 2008, , 248-344.		9
79	Regional hydraulic model of the Upper Rhine Graben. Advances in Geosciences, 0, 49, 197-206.	12.0	9
80	Quaternary channels within the Northeast German Basin and their relevance on double diffusive convective transport processes: Constraints from $3\hat{a}\in D$ thermohaline numerical simulations. Geochemistry, Geophysics, Geosystems, 2013, 14, 3156-3175.	1.0	8
81	Sensitivity of a 3D Geothermal Model of Berlin with Respect to Upper Boundary Conditions. Energy Procedia, 2015, 76, 291-300.	1.8	8
82	Lithospheric Control on Asthenospheric Flow From the Iceland Plume: 3â€Ð Density Modeling of the Jan Mayenâ€East Greenland Region, NE Atlantic. Journal of Geophysical Research: Solid Earth, 2018, 123, 9223-9248.	1.4	8
83	Geoenergy: new concepts for utilization of geo-reservoirs as potential energy sources. Environmental Earth Sciences, 2013, 70, 3427-3431.	1.3	7
84	Coupled thermo-mechanical 3D subsidence analysis along the SW African passive continental margin. Arabian Journal of Geosciences, 2016, 9, 1.	0.6	7
85	3-D crustal density model of the Sea of Marmara. Solid Earth, 2019, 10, 785-807.	1.2	7
86	Surface to Groundwater Interactions beneath the City of Berlin: Results from 3D Models. Geofluids, 2019, 2019, 1-22.	0.3	7
87	Influence of Lithosphere Rheology on Seismicity in an Intracontinental Rift: The Case of the Rhine Graben. Frontiers in Earth Science, 2020, 8, .	0.8	7
88	Modelling the Surface Heat Flow Distribution in the Area of Brandenburg (Northern Germany). Energy Procedia, 2013, 40, 545-553.	1.8	6
89	Dynamics and Active Processes: the Albanian Natural Laboratory and Analogues. Italian Journal of Geosciences, 2013, 132, 169-174.	0.4	6
90	Modelling the coupling between salt kinematics and subsidence evolution: Inferences for the Miocene evolution of the Transylvanian Basin. Tectonophysics, 2015, 658, 169-185.	0.9	6

#	Article	IF	CITATIONS
91	The Geothermal Field Below the City of Berlin, Germany: Results from Structurally and Parametrically Improved 3D Models. Energy Procedia, 2016, 97, 334-341.	1.8	6
92	A three-dimensional lithospheric-scale thermal model of Germany. Advances in Geosciences, 0, 49, 225-234.	12.0	6
93	Heterogeneous Crystalline Crust Controls the Shallow Thermal Field – A Case Study of Hessen (Germany). Energy Procedia, 2015, 76, 331-340.	1.8	5
94	Lithospheric 3D gravity modelling using upper-mantle density constraints: Towards a characterization of the crustal configuration inÂthe North Patagonian MassifÂarea,ÂArgentina. Tectonophysics, 2017, 700-701, 150-161.	0.9	5
95	The preserved plume of the Caribbean Large Igneous Plateau revealed by 3D data-integrative models. Solid Earth, 2021, 12, 275-298.	1.2	5
96	Lithosphere dynamics and sedimentary basins: the Arabian plate and analogues. Arabian Journal of Geosciences, 2010, 3, 327-329.	0.6	3
97	Overcoming Spatial Scales in Geothermal Modelling for Urban Areas. Energy Procedia, 2017, 125, 98-105.	1.8	3
98	Strain and Temperature an Space and Time. , 2008, , 36-153.		3
99	Boundary condition control on inter-aquifer flow in the subsurface of Berlin (Germany) – new insights from 3-D numerical modelling. Advances in Geosciences, 0, 49, 9-18.	12.0	3
100	Controls of the Lithospheric Thermal Field of an Ocean-Continent Subduction Zone: The Southern Central Andes. Lithosphere, 2022, 2022, .	0.6	3
101	The application of inverse modeling in characterizing hydraulic conductivity beneath the city of Berlin, Germany. Environmental Earth Sciences, 2016, 75, 1.	1.3	2
102	Processes Responsible for Localized Deformation within Porous Rocks: Insights from Laboratory Experiments and Numerical Modeling. , 2017, , .		2
103	Lithospheric strength variations and seismotectonic segmentation below the Sea of Marmara. Tectonophysics, 2021, 815, 228999.	0.9	2
104	3-D Simulations of Groundwater Utilization in an Urban Catchment of Berlin, Germany. Advances in Geosciences, 0, 45, 177-184.	12.0	2
105	The crustal stress field of Germany: a refined prediction. Geothermal Energy, 2022, 10, .	0.9	2
106	Research on Utilization of Geo-energy. Energy Procedia, 2013, 40, 249-255.	1.8	1
107	An introduction to the Tectonophysics Special Issue "Basin Dynamics― Tectonophysics, 2013, 591, 1-2.	0.9	1
108	Dissolved CO2 Storage in Geological Formations with Low Pressure, Low Risk and Large Capacities. Energy Procedia, 2017, 114, 4722-4727.	1.8	1

#	Article	IF	CITATIONS
109	Present-day thermal field and Mesozoic-Cenozoic thermal evolution of the Western Bredasdorp Basin (South Africa): An integrated 3D numerical forward modelling approach. Marine and Petroleum Geology, 2018, 93, 57-78.	1.5	1
110	3D thermal and rheological models of the southern RÃo de la Plata Craton (Argentina): implications for the initial stage of the Colorado rifting and the evolution of Sierras Australes. International Journal of Earth Sciences, 0, , .	0.9	1
111	Unravelling the lithospheric-scale thermal field of the North Patagonian Massif plateau (Argentina) and its relations to the topographic evolution of the area. International Journal of Earth Sciences, 2020, 110, 2315.	0.9	0
112	Sedimentary Basins. Encyclopedia of Earth Sciences Series, 2021, , 1353-1365.	0.1	0
113	Sedimentary Basins. Encyclopedia of Earth Sciences Series, 2011, , 1059-1070.	0.1	0
114	Sedimentary Basins. Encyclopedia of Earth Sciences Series, 2020, , 1-13.	0.1	0
115	The recent stress state of Germany – results of a geomechanical–numerical 3D model. , 0, 1, 163-164.		0