Mikhail G Sulman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/738495/publications.pdf Version: 2024-02-01

MIKHAIL C SHEMAN

#	Article	IF	CITATIONS
1	Ru@hyperbranched Polymer for Hydrogenation of Levulinic Acid to Gamma-Valerolactone: The Role of the Catalyst Support. International Journal of Molecular Sciences, 2022, 23, 799.	4.1	9
2	Kinetic Modeling for the "One-Pot―Hydrogenolysis of Cellulose to Glycols over Ru@Fe3O4/Polymer Catalyst. Reactions, 2022, 3, 1-11.	2.1	4
3	Mono- and Bimetallic Nanoparticles Stabilized by an Aromatic Polymeric Network for a Suzuki Cross-Coupling Reaction. Nanomaterials, 2022, 12, 94.	4.1	2
4	Hydrogenation of a Benzeneâ€Toluene Mixture Using Metal Nanoparticles Stabilized by a Hyper rosslinked Aromatic Polymer. Chemical Engineering and Technology, 2021, 44, 1955-1961.	1.5	3
5	Noble Metal Nanoparticles Stabilized by Hyper-Cross-Linked Polystyrene as Effective Catalysts in Hydrogenation of Arenes. Molecules, 2021, 26, 4687.	3.8	3
6	Alkane production from unsaturated fatty acids over transition metal dopped Pd catalysts. Chemical Engineering and Technology, 2021, 44, 2109.	1.5	0
7	Mono- and bimetallic (Ru-Co) polymeric catalysts for levulinic acid hydrogenation. Catalysis Today, 2021, 378, 167-175.	4.4	15
8	Polymer-based bifunctional catalysts for anthracene hydrocracking in the medium of supercritical propanol-2. Catalysis Today, 2021, 378, 158-166.	4.4	7
9	Study of Deactivation in Suzuki Reaction of Polymer-Stabilized Pd Nanocatalysts. Processes, 2020, 8, 1653.	2.8	11
10	Ru-doped transition metal catalysts for liquid-phase Fischer–Tropsch synthesis. Reaction Kinetics, Mechanisms and Catalysis, 2020, 130, 813-823.	1.7	2
11	Selective Hydrogenation of Biomassâ€Derived Furfural: Enhanced Catalytic Performance of Pdâ^'Cu Alloy Nanoparticles in Porous Polymer. ChemPlusChem, 2020, 85, 1697-1703.	2.8	13
12	Kinetic Modelling of Levulinic Acid Hydrogenation Over Ru-Containing Polymeric Catalyst. Topics in Catalysis, 2020, 63, 243-253.	2.8	12
13	Magnetically separable Ru-containing catalysts in supercritical deoxygenation of fatty acids. Pure and Applied Chemistry, 2020, 92, 817-826.	1.9	2
14	Pd Catalyst Based on Hyperbranched Polypyridylphenylene Formed In Situ on Magnetic Silica Allows for Excellent Performance in Suzuki–Miyaura Reaction. ACS Applied Materials & Interfaces, 2020, 12, 22170-22178.	8.0	17
15	Dendritic effect for immobilized pyridylphenylene dendrons in hosting catalytic Pd species: Positive or negative?. Reactive and Functional Polymers, 2020, 151, 104582.	4.1	5
16	MAGNETICALLY RECOVERABLE POLYMER CATALYST FOR CELLULOSE HYDROGENOLYSIS. ChemChemTech, 2020, 63, 59-63.	0.3	0
17	Isolation of shikimic acid from Picea abies needles. The future prospects. IOP Conference Series: Earth and Environmental Science, 2019, 316, 012048.	0.3	1
18	Study of the Structure of Cobalt-Containing Catalysts Synthesized under Subcritical Conditions. Kinetics and Catalysis, 2019, 60, 618-626.	1.0	4

#	Article	IF	CITATIONS
19	Synthesisâ€Gas Absorption under Real Process Conditions: Thermodynamic Aspects. Chemical Engineering and Technology, 2019, 42, 805-811.	1.5	0
20	Pd Nanoparticles Stabilized by Hypercrosslinked Polystyrene Catalyze Selective Triple C-C Bond Hydrogenation and Suzuki Cross-Coupling. Journal of Nanomaterials, 2019, 2019, 1-7.	2.7	9
21	Pyridylphenylene dendrons immobilized on the surface of chemically modified magnetic silica as efficient stabilizing molecules of Pd species. Applied Surface Science, 2019, 488, 865-873.	6.1	17
22	Cellulose Conversion Into Hexitols and Glycols in Water: Recent Advances in Catalyst Development. Frontiers in Chemistry, 2019, 7, 834.	3.6	15
23	The liquid phase catalytic hydrogenation of furfural to furfuryl alcohol. Catalysis Today, 2019, 329, 142-148.	4.4	40
24	Fatty Acid Deoxygenation in Supercritical Hexane over Catalysts Synthesized Hydrothermally for Biodiesel Production. Chemical Engineering and Technology, 2019, 42, 780-787.	1.5	11
25	RU-CONTAINING CATALYSTS FOR CELLULOSE CONVERSION INTO SORBITOL AND GLYCOLS. , 2019, , .		0
26	Magnetically recoverable catalysts for the conversion of inulin to mannitol. Energy, 2018, 154, 1-6.	8.8	9
27	Catalytic performance of the modified H-ZSM-5 zeolite in methanol transformation to hydrocarbons. Reaction Kinetics, Mechanisms and Catalysis, 2018, 124, 807-822.	1.7	11
28	Comparison of methanol to gasoline conversion in one-step, two-step, and cascade mode in the presence of H-ZSM-5 zeolite. International Journal of Sustainable Energy, 2018, 37, 970-977.	2.4	5
29	Au Core–Pd Shell Bimetallic Nanoparticles Immobilized within Hyper-Cross-Linked Polystyrene for Mechanistic Study of Suzuki Cross-Coupling: Homogeneous or Heterogeneous Catalysis?. Organic Process Research and Development, 2018, 22, 1606-1613.	2.7	26
30	Cellulose conversion into polyols. AIP Conference Proceedings, 2018, , .	0.4	0
31	Magnetically Recoverable Ruthenium-Containing Catalysts for Polysaccharide Conversion. Catalysis in Industry, 2018, 10, 251-256.	0.7	0
32	Ni catalyst synthesized by hydrothermal deposition on the polymeric matrix in the supercritical deoxygenation of fatty acids. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125, 213-226.	1.7	13
33	Insights into Sustainable Glucose Oxidation Using Magnetically Recoverable Biocatalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 9845-9853.	6.7	8
34	MODIFICATION OF ALUMOSILICATE H-ZSM-5 AND INVESTIGATION OF ITS CATALYTIC ACTIVITY IN TRANSFORMATION PROCESS OF METHANOL TO HYDROCARBONS. ChemChemTech, 2018, 59, 79.	0.3	0
35	VAPOR GASIFICATION OF LOW QUALITY SOLID FUEL OF TVER REGION. ChemChemTech, 2018, 59, 69.	0.3	0
36	PECULIARITIES OF SMALL STRAINED ALICYCLE COMPOUNDS FORMATION IN CATALYTIC TRANSFORMATION OF METHANOL OVER ZEOLITE H-ZSM-5. ChemChemTech, 2018, 61, 74-80.	0.3	0

#	Article	IF	CITATIONS
37	Hydrogenation of levulinic acid using Ru-containing catalysts based on hypercrosslinked polystyrene. Green Processing and Synthesis, 2017, 6, 281-286.	3.4	11
38	Enhancing the Catalytic Activity of Zn-Containing Magnetic Oxides in a Methanol Synthesis: Identifying the Key Factors. ACS Applied Materials & amp; Interfaces, 2017, 9, 2285-2294.	8.0	17
39	Metal-Ion Distribution and Oxygen Vacancies That Determine the Activity of Magnetically Recoverable Catalysts in Methanol Synthesis. ACS Applied Materials & Interfaces, 2017, 9, 34005-34014.	8.0	16
40	Promotion Effect of Alkali Metal Hydroxides on Polymer-Stabilized Pd Nanoparticles for Selective Hydrogenation of C–C Triple Bonds in Alkynols. Industrial & Engineering Chemistry Research, 2017, 56, 13219-13227.	3.7	16
41	Efficient Furfuryl Alcohol Synthesis from Furfural over Magnetically Recoverable Catalysts: Does the Catalyst Stabilizing Medium Matter?. ChemistrySelect, 2017, 2, 5485-5491.	1.5	16
42	Cr–Containing Magnetic Oxides in a Methanol Synthesis: Does Cr Ion Distribution Matter?. ChemistrySelect, 2017, 2, 6269-6276.	1.5	4
43	Stearic acid hydrodeoxygenation over Pd nanoparticles embedded in mesoporous hypercrosslinked polystyrene. Journal of Industrial and Engineering Chemistry, 2017, 46, 426-435.	5.8	35
44	Petroleum-containing residue processing via co-catalyzed pyrolysis. Fuel, 2017, 198, 159-164.	6.4	8
45	Hydrolytic hydrogenation of cellulose in subcritical water with the use of the Ru-containing polymeric catalysts. Catalysis Today, 2017, 280, 45-50.	4.4	19
46	Zn/Cu SORBENT SYNTHESIS FOR SYN-GAS PURIFICATION FROM HYDROGEN SULFIDE. ChemChemTech, 2017, 60, 61.	0.3	0
47	Ru-Containing Magnetically Recoverable Catalysts: A Sustainable Pathway from Cellulose to Ethylene and Propylene Glycols. ACS Applied Materials & Interfaces, 2016, 8, 21285-21293.	8.0	51
48	Catalysts of Suzuki Cross-Coupling Based on Functionalized Hyper-cross-linked Polystyrene: Influence of Precursor Nature. Organic Process Research and Development, 2016, 20, 1453-1460.	2.7	18
49	Pd-Nanoparticles Confined Within Hollow Polymeric Framework as Effective Catalysts for the Synthesis of Fine Chemicals. Topics in Catalysis, 2016, 59, 1185-1195.	2.8	19
50	Zinc-Containing Magnetic Oxides Stabilized by a Polymer: One Phase or Two?. ACS Applied Materials & Interfaces, 2016, 8, 891-899.	8.0	22
51	Catalytic Hydrodeoxygenation of Fatty Acids for Biodiesel Production. Bulletin of Chemical Reaction Engineering and Catalysis, 2016, 11, 125-132.	1.1	11
52	Kinetic Study of the Catalytic Pyrolysis of Oil-Containing Waste. Bulletin of Chemical Reaction Engineering and Catalysis, 2016, 11, 330.	1.1	4
53	Adsorption Processes for the Synthesis ofÂCatalytically Active Metal Nanoparticles in Polymeric Matrices. Chemical Engineering and Technology, 2015, 38, 683-689.	1.5	2
54	Synthesis of 4-Methoxybiphenyl Using Pd-Containing Catalysts Based on Polymeric Matrix of Functionalized Hypercrosslinked Polystyrene. Bulletin of Chemical Reaction Engineering and Catalysis, 2015, 10, .	1.1	5

#	Article	IF	CITATIONS
55	Influence of the Mesoporous Polymer Matrix Nature on the Formation of Catalytically Active Ruthenium Nanoparticles. Bulletin of Chemical Reaction Engineering and Catalysis, 2015, 10, .	1.1	6
56	Design of ruthenium/iron oxide nanoparticle mixtures for hydrogenation of nitrobenzene. Catalysis Science and Technology, 2015, 5, 1902-1910.	4.1	104
57	Investigating the catalytic hydrogenation of nitrobenzene in supercritical carbon dioxide using Pd-containing catalysts. Catalysis in Industry, 2015, 7, 1-5.	0.7	6
58	Kinetic study of selective hydrogenation of 2-methyl-3-butyn-2-ol over Pd-containing hypercrosslinked polystyrene. Catalysis Today, 2015, 256, 231-240.	4.4	29
59	Hydrodeoxygenation of stearic acid for the production of "green―diesel. Green Processing and Synthesis, 2014, 3, 441-446.	3.4	9
60	Catalytic nitrobenzene hydrogenation in supercritical carbon dioxide. Russian Journal of Physical Chemistry B, 2014, 8, 958-962.	1.3	4
61	Influence of metals chlorides on oil-slime thermocatalytic processing. Chemical Engineering Journal, 2014, 238, 219-226.	12.7	12
62	Liquid-phase synthesis of methanol using industrial copper-zinc catalyst. Catalysis in Industry, 2014, 6, 143-149.	0.7	2
63	Fabrication of Magnetically Recoverable Catalysts Based on Mixtures of Pd and Iron Oxide Nanoparticles for Hydrogenation of Alkyne Alcohols. ACS Applied Materials & Interfaces, 2014, 6, 21652-21660.	8.0	85
64	Density Functional Theory Investigation on the Nucleation and Growth of Small Palladium Clusters on a Hyper-Cross-Linked Polystyrene Matrix. Journal of Physical Chemistry C, 2014, 118, 21006-21013.	3.1	28
65	Hydrophobic Periphery Tails of Polyphenylenepyridyl Dendrons Control Nanoparticle Formation and Catalytic Properties. Chemistry of Materials, 2014, 26, 5654-5663.	6.7	20
66	Ru-Containing Polymeric Catalysts for Cellulose Conversion to Polyols. Topics in Catalysis, 2014, 57, 1476-1482.	2.8	14
67	Catalytic syntheses of 2-methyl-1,4-naphthoquinone in conventional solvents and supercritical carbon dioxide. Chemical Engineering Journal, 2014, 238, 206-209.	12.7	18
68	Polyphenylenepyridyl Dendrons with Functional Periphery and Focal Points: Syntheses and Applications. Macromolecules, 2013, 46, 5890-5898.	4.8	80
69	Phenol Catalytic Wet Air Oxidation Over Ru Nanoparticles Formed in Hypercrosslinked Polystyrene. Topics in Catalysis, 2013, 56, 688-695.	2.8	17
70	D-glucose catalytic oxidation over palladium nanoparticles introduced in the hypercrosslinked polystyrene matrix. Green Processing and Synthesis, 2013, 2, .	3.4	1
71	<scp>d</scp> -Glucose Hydrogenation over Ru Nanoparticles Embedded in Mesoporous Hypercrosslinked Polystyrene. Journal of Physical Chemistry A, 2013, 117, 4073-4083.	2.5	51
72	Kinetics of Lactose Hydrogenation over Ruthenium Nanoparticles in Hypercrosslinked Polystyrene. Industrial & Engineering Chemistry Research, 2013, 52, 14066-14080.	3.7	22

#	Article	IF	CITATIONS
73	Î ³ -Fe2O3 nanoparticle surface controls PtFe nanoparticle growth and catalytic properties. Nanoscale, 2013, 5, 2921.	5.6	14
74	Functionalization of Monodisperse Iron Oxide NPs and Their Properties as Magnetically Recoverable Catalysts. Langmuir, 2013, 29, 466-473.	3.5	91
75	Pd(ii) nanoparticles in porous polystyrene: factors influencing the nanoparticle size and catalytic properties. Journal of Materials Chemistry, 2012, 22, 6441.	6.7	24
76	Catalytic pyrolysis of peat with additions of oil-slime and polymeric waste. , 2012, , .		0
77	Kinetics of phenol hydrogenation over Pd-containing hypercrosslinked polystyrene. Chemical Engineering Journal, 2011, 176-177, 33-41.	12.7	27
78	Nanosized catalysts as a basis for intensifications of technologies. Chemical Engineering and Processing: Process Intensification, 2011, 50, 1041-1053.	3.6	14
79	Effect of ultrasonic pretreatment on the composition of lignocellulosic material in biotechnological processes. Catalysis in Industry, 2011, 3, 28-33.	0.7	30
80	Nanosized Pt-, Ru-, and Pd-containing catalysts for organic synthesis and solution of environmental issues. Catalysis in Industry, 2011, 3, 260-270.	0.7	8
81	Biocatalitic Oxidation of 2,3,6-Trimethylphenol Over Immobilized Horseradish Peroxidase in Nonaqueous Media. Topics in Catalysis, 2011, 54, 1309-1317.	2.8	4
82	Structured polyphenylenes as carriers of palladium nanoparticles used as selective hydrogenation catalysts. Polymer Science - Series B, 2010, 52, 49-56.	0.8	1
83	Nanostructured metallopolymer catalysts in fine organic synthesis. Catalysis in Industry, 2010, 2, 11-19.	0.7	0
84	Prospects for the development of oxidative catalysis (On the materials of the ninth international) Tj ETQq0 0 0	rgBT/Over	lock 10 Tf 50
85	"Biotechnology: State of the Art and Prospects of Development―Fifth international congress (March) Tj E1	^r Qq110.7	84314 rgBT
86	Efficient polymer-based nanocatalysts with enhanced catalytic performance in wet air oxidation of phenol. Applied Catalysis B: Environmental, 2010, 94, 200-210.	20.2	34
87	Influence of heterogenization on catalytic behavior of mono- and bimetallic nanoparticles formed in poly(styrene)-block-poly(4-vinylpyridine) micelles. Journal of Catalysis, 2009, 262, 150-158.	6.2	11
88	Direct d-Glucose Oxidation over Noble Metal Nanoparticles Introduced on Polymer and Inorganic Supports. Topics in Catalysis, 2009, 52, 387-393.	2.8	12
89	Enantioselective catalytic hydrogenation of activated ketones using polymer-containing nanocomposites. Catalysis Today, 2009, 140, 64-69.	4.4	27
90	Influence of aluminosilicate materials on the peat low-temperature pyrolysis and gas formation.	12.7	35

Chemical Engineering Journal, 2009, 154, 355-360.

#	Article	IF	CITATIONS
91	Nanosized catalysts in fine organic synthesis as a basis for developing innovative technologies in the pharmaceutical industry. Nanotechnologies in Russia, 2009, 4, 647-664.	0.7	10
92	Kinetics of phenol oxidation over hypercrosslinked polystyrene impregnated with Pt nanoparticles. Chemical Engineering Journal, 2007, 134, 256-261.	12.7	27
93	Catalytic properties of Ru nanoparticles introduced in a matrix of hypercrosslinked polystyrene toward the low-temperature oxidation of d-glucose. Journal of Molecular Catalysis A, 2007, 278, 112-119.	4.8	46
94	Structure and behavior of nanoparticulate catalysts based on ultrathin chitosan layers. Journal of Molecular Catalysis A, 2007, 276, 116-129.	4.8	10
95	Novel Nano Catalysts on the Base of Hyper-crosslinked Polystyrene for Carbohydrates Oxidation. Studies in Surface Science and Catalysis, 2006, , 119-126.	1.5	7
96	Selective Hydrogenation of Dehydrolinalool to Linalool Using Nanostructured Pd-Polymeric Composite Catalysts. Chemical Industries, 2006, , .	0.1	0
97	Palladium Nanoparticles by Electrospinning from Poly(acrylonitrile-co-acrylic acid)â^PdCl2 Solutions. Relations between Preparation Conditions, Particle Size, and Catalytic Activity. Macromolecules, 2004, 37, 1787-1792.	4.8	279
98	Selective dehydrolinalool hydrogenation with poly(ethylene oxide)-block-poly-2-vinylpyridine micelles filled with Pd nanoparticles. Journal of Molecular Catalysis A, 2004, 208, 273-284.	4.8	66
99	Thermosensitive Imidazole-Containing Polymers as Catalysts in Hydrolytic Decomposition ofp-Nitrophenyl Acetate. Macromolecules, 2004, 37, 7879-7883.	4.8	48
100	Structure and Catalytic Properties of Pt-Modified Hyper-Cross-Linked Polystyrene Exhibiting Hierarchical Porosity. Journal of Physical Chemistry B, 2004, 108, 18234-18242.	2.6	77
101	Mesoporous Alumina and Aluminosilica with Pd and Pt Nanoparticles:  Structure and Catalytic Properties. Chemistry of Materials, 2003, 15, 2623-2631.	6.7	55
102	Structure and Properties of Bimetallic Colloids Formed in Polystyrene-block-Poly-4-vinylpyridine Micelles: Catalytic Behavior in Selective Hydrogenation of Dehydrolinalool. Journal of Catalysis, 2000, 196, 302-314.	6.2	112
103	Effects of ultrasound on catalytic processes. Russian Chemical Reviews, 2000, 69, 165-177.	6.5	25