
Jean-Philippe Malet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7384829/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment, 2014, 73, 209.	1.6	541
2	The use of Global Positioning System techniques for the continuous monitoring of landslides: application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France). Geomorphology, 2002, 43, 33-54.	1.1	270
3	Fatal landslides in Europe. Landslides, 2016, 13, 1545-1554.	2.7	238
4	Landslide susceptibility assessment by bivariate methods at large scales: Application to a complex mountainous environment. Geomorphology, 2007, 92, 38-59.	1.1	218
5	Ground-based multi-view photogrammetry for the monitoring of landslide deformation and erosion. Geomorphology, 2015, 231, 130-145.	1.1	176
6	Correlation of multi-temporal ground-based optical images for landslide monitoring: Application, potential and limitations. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 70, 39-55.	4.9	168
7	Landslide deformation monitoring with ALOS/PALSAR imagery: A D-InSAR geomorphological interpretation method. Geomorphology, 2015, 231, 314-330.	1.1	160
8	A Method for Automatic and Rapid Mapping of Water Surfaces from Sentinel-1 Imagery. Remote Sensing, 2018, 10, 217.	1.8	157
9	A CIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain. Natural Hazards and Earth System Sciences, 2009, 9, 1897-1909.	1.5	140
10	Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data. Landslides, 2012, 9, 357-369.	2.7	135
11	Image-based mapping of surface fissures for the investigation of landslide dynamics. Geomorphology, 2013, 186, 12-27.	1.1	135
12	Analysis of debris flow behavior with a one dimensional run-out model incorporating entrainment. Engineering Geology, 2012, 128, 63-75.	2.9	132
13	Optimizing landslide susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression models. Geomorphology, 2018, 301, 10-20.	1.1	130
14	Monitoring landslide displacements with the Geocube wireless network of low-cost GPS. Engineering Geology, 2015, 195, 111-121.	2.9	125
15	Surface reconstruction and landslide displacement measurements with Pléiades satellite images. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 95, 1-12.	4.9	112
16	Triggering conditions and mobility of debris flows associated to complex earthflows. Geomorphology, 2005, 66, 215-235.	1.1	111
17	Airborne laser scanning of forested landslides characterization: Terrain model quality and visualization. Geomorphology, 2011, 126, 186-200.	1.1	111
18	Correlation of satellite image time-series for the detection and monitoring of slow-moving landslides. Remote Sensing of Environment, 2017, 189, 40-55.	4.6	109

#	Article	IF	CITATIONS
19	Forecasting the behaviour of complex landslides with a spatially distributed hydrological model. Natural Hazards and Earth System Sciences, 2005, 5, 71-85.	1.5	108
20	Automatic classification of endogenous landslide seismicity using the Random Forest supervised classifier. Geophysical Research Letters, 2017, 44, 113-120.	1.5	104
21	Techniques, issues and advances in numerical modelling of landslide hazard. Bulletin - Societie Geologique De France, 2007, 178, 65-88.	0.9	94
22	Time-variable 3D ground displacements from high-resolution synthetic aperture radar (SAR). application to La Valette landslide (South French Alps). Remote Sensing of Environment, 2013, 139, 198-204.	4.6	88
23	Hydrological response of weathered clayâ€shale slopes: water infiltration monitoring with timeâ€lapse electrical resistivity tomography. Hydrological Processes, 2012, 26, 2106-2119.	1.1	87
24	Analysis of land cover changes in the past and the future as contribution to landslide risk scenarios. Applied Geography, 2014, 53, 11-19.	1.7	87
25	Rheological properties of fine-grained sediment: the roles of texture and mineralogy. Canadian Geotechnical Journal, 2010, 47, 1085-1100.	1.4	86
26	Dendrogeomorphic reconstruction of past landslide reactivation with seasonal precision: the Bois Noir landslide, southeast French Alps. Landslides, 2012, 9, 189-203.	2.7	85
27	Instability conditions of marly hillslopes: towards landsliding or gullying? The case of the Barcelonnette Basin, South East France. Engineering Geology, 2003, 70, 109-130.	2.9	83
28	Assessment of debris-flow susceptibility at medium-scale in the Barcelonnette Basin, France. Natural Hazards and Earth System Sciences, 2011, 11, 627-641.	1.5	83
29	Tier-based approaches for landslide susceptibility assessment in Europe. Landslides, 2013, 10, 529-546.	2.7	83
30	Parameterization of a numerical 2-D debris flow model with entrainment: a case study of the Faucon catchment, Southern French Alps. Natural Hazards and Earth System Sciences, 2012, 12, 3075-3090.	1.5	81
31	Characterization of the 3D geometry of flow-like landslides: A methodology based on the integration of heterogeneous multi-source data. Engineering Geology, 2012, 128, 30-48.	2.9	79
32	Active Learning in the Spatial Domain for Remote Sensing Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 2492-2507.	2.7	74
33	Initial insights from a global database of rainfall-induced landslide inventories: the weak influence of slope and strong influence of total storm rainfall. Earth Surface Dynamics, 2018, 6, 903-922.	1.0	73
34	Hierarchical extraction of landslides from multiresolution remotely sensed optical images. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 87, 122-136.	4.9	72
35	Climate-physiographically differentiated Pan-European landslide susceptibility assessment using spatial multi-criteria evaluation and transnational landslide information. Geomorphology, 2014, 224, 69-85.	1.1	71
36	Influence of check dams on debris-flow run-out intensity. Natural Hazards and Earth System Sciences, 2008, 8, 1403-1416.	1.5	69

#	Article	IF	CITATIONS
37	Flow behaviour and runout modelling of a complex debris flow in a clay-shale basin. Earth Surface Processes and Landforms, 2005, 30, 479-488.	1.2	67
38	Seismic noise-based methods for soft-rock landslide characterization. Bulletin - Societie Geologique De France, 2007, 178, 137-148.	0.9	67
39	Characterizing landslides through geophysical data fusion: Example of the La Valette landslide (France). Engineering Geology, 2012, 128, 23-29.	2.9	67
40	Improved Co-Registration of Sentinel-2 and Landsat-8 Imagery for Earth Surface Motion Measurements. Remote Sensing, 2018, 10, 160.	1.8	65
41	Pan-European landslide susceptibility mapping: ELSUS Version 2. Journal of Maps, 2018, 14, 97-104.	1.0	63
42	Automatic identification of rockfalls and volcano-tectonic earthquakes at the Piton de la Fournaise volcano using a Random Forest algorithm. Journal of Volcanology and Geothermal Research, 2017, 340, 130-142.	0.8	61
43	Image-based correlation of Laser Scanning point cloud time series for landslide monitoring. International Journal of Applied Earth Observation and Geoinformation, 2014, 32, 1-18.	1.4	56
44	A model of hydrological and mechanical feedbacks of preferential fissure flow in a slow-moving landslide. Hydrology and Earth System Sciences, 2013, 17, 947-959.	1.9	53
45	Prediction of changes in landslide rates induced by rainfall. Landslides, 2015, 12, 481-494.	2.7	53
46	Assessment of socioeconomic vulnerability to landslides using an indicator-based approach: methodology and case studies. Bulletin of Engineering Geology and the Environment, 2014, 73, 307-324.	1.6	49
47	Permanent electrical resistivity measurements for monitoring water circulation in clayey landslides. Journal of Applied Geophysics, 2016, 126, 98-115.	0.9	49
48	Identifying the origin of groundwater and ï¬,ow processes in complex landslides affecting black marls: insights from a hydrochemical survey. Earth Surface Processes and Landforms, 2007, 32, 32-48.	1.2	48
49	Single-block rockfall dynamics inferred from seismic signal analysis. Earth Surface Dynamics, 2017, 5, 283-292.	1.0	47
50	The effect of groundwater fluctuations on the velocity pattern of slow-moving landslides. Natural Hazards and Earth System Sciences, 2009, 9, 739-749.	1.5	46
51	Assessing debris flow hazards associated with slow moving landslides: methodology and numerical analyses. Landslides, 2004, 1, 83-90.	2.7	44
52	Long-term monitoring of a large deep-seated landslide (La Clapiere, South-East French Alps): initial study. Landslides, 2017, 14, 155-170.	2.7	43
53	National-scale landslide susceptibility map of Romania in a European methodological framework. Geomorphology, 2020, 371, 107432.	1.1	41
54	Caractérisation de la structure interne et de l'état hydrique de glissements argilo-marneux par tomographie géophysique : l'exemple du glissement-coulée de Super-Sauze (Alpes du Sud, France). Comptes Rendus - Geoscience, 2006, 338, 587-595.	0.4	39

#	Article	IF	CITATIONS
55	Seismic monitoring of soft-rock landslides: the Super-Sauze and Valoria case studies. Geophysical Journal International, 2013, 193, 1515-1536.	1.0	39
56	Soil surface characteristics influence on infiltration in black marls: application to the Super-Sauze earthflow (southern Alps, France). Earth Surface Processes and Landforms, 2003, 28, 547-564.	1.2	38
57	Understanding mudslides through micro-seismic monitoring: the Super-Sauze (South-East French) Tj ETQq1 1 (0.784314 rg 0.9	gBT ₃ /Overlock
58	Caractérisation des profils de formations superficielles par pénétrométrie dynamique à énergie variable : application aux marnes noires de Draix (Alpes-de-Haute-Provence, France). Comptes Rendus - Geoscience, 2002, 334, 835-841.	0.4	35
59	Towards a standard typology of endogenous landslide seismic sources. Earth Surface Dynamics, 2018, 6, 1059-1088.	1.0	35
60	Complex-conductivity imaging for the understanding of landslide architecture. Engineering Geology, 2018, 243, 241-252.	2.9	35
61	Morphology and sedimentology of a complex debris flow in a clay-shale basin. Earth Surface Processes and Landforms, 2005, 30, 339-348.	1.2	34
62	Flow-type failures in fine-grained soils: an important aspect in landslide hazard analysis. Natural Hazards and Earth System Sciences, 2009, 9, 1703-1711.	1.5	34
63	Geophysical data fusion by fuzzy logic for imaging the mechanical behaviour of mudslides. Bulletin - Societie Geologique De France, 2007, 178, 127-136.	0.9	33
64	Target Detection and Tracking of moving objects for characterizing landslide displacements from time-lapse terrestrial optical images. Engineering Geology, 2014, 172, 26-40.	2.9	33
65	Rheological properties of clayey soils originating from flow-like landslides. Landslides, 2018, 15, 1615-1630.	2.7	33
66	Influence of landslide geometry and kinematic deformation to describe the liquefaction of landslides: Some theoretical considerations. Engineering Geology, 2006, 88, 59-69.	2.9	32
67	Control of landslide retrogression by discontinuities: evidence by the integration of airborne- and ground-based geophysical information. Landslides, 2013, 10, 37-54.	2.7	30
68	Exploration of continuous seismic recordings with a machine learning approach to document 20 yr of landslide activity in Alaska. Geophysical Journal International, 2019, 219, 1138-1147.	1.0	30
69	The use of small-format and low-altitude aerial photos for the realization of high-resolution DEMs in mountainous areas: application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France). Earth Surface Processes and Landforms, 2002, 27, 1339-1350.	1.2	29
70	Characterization of a landslide geometry using 3D seismic refraction traveltime tomography: The La Valette landslide case history. Journal of Applied Geophysics, 2012, 86, 120-132.	0.9	28
71	Fusion of Sentinel-1 and Sentinel-2 image time series for permanent and temporary surface water mapping. International Journal of Remote Sensing, 0, , 1-24.	1.3	28
72	Hydrological and hydrochemical processes observed during a largeâ€scale infiltration experiment at the Superâ€Sauze mudslide (France). Hydrological Processes, 2012, 26, 2157-2170.	1.1	26

#	Article	IF	CITATIONS
73	When image correlation is needed: Unravelling the complex dynamics of a slow-moving landslide in the tropics with dense radar and optical time series. Remote Sensing of Environment, 2021, 258, 112402.	4.6	26
74	Medium-Scale Multi-hazard Risk Assessment of Gravitational Processes. Advances in Natural and Technological Hazards Research, 2014, , 201-231.	1.1	26
75	The 3D structure of the super-sauze earthflow: A first stage towards modelling its behaviour. Physics and Chemistry of the Earth, 2000, 25, 785-791.	0.3	25
76	Airborne and ground-based data sources for characterizing the morpho-structure of a coastal landslide. Geomorphology, 2014, 217, 140-151.	1.1	24
77	Spatial Patterns of Stormâ€Induced Landslides and Their Relation to Rainfall Anomaly Maps. Geophysical Research Letters, 2019, 46, 11167-11177.	1.5	24
78	Quasi-Newton inversion of seismic first arrivals using source finite bandwidth assumption: Application to subsurface characterization of landslides. Journal of Applied Geophysics, 2012, 87, 94-106.	0.9	23
79	Landslide consequence analysis: a region-scale indicator-based methodology. Landslides, 2014, 11, 843-858.	2.7	23
80	Monitoring water flow in a clay-shale hillslope from geophysical data fusion based on a fuzzy logic approach. Comptes Rendus - Geoscience, 2009, 341, 937-948.	0.4	21
81	Analysis of a landslide multi-date inventory in a complex mountain landscape: the Ubaye valley case study. Natural Hazards and Earth System Sciences, 2015, 15, 2369-2389.	1.5	19
82	The need for harmonizing methodologies for assessing soil threats in Europe. Soil Use and Management, 2010, 26, 299-309.	2.6	18
83	Detection of seasonal cycles of erosion processes in a black marl gully from a time series of high-resolution digital elevation models (DEMs). Earth Surface Dynamics, 2016, 4, 781-798.	1.0	18
84	Groundwater—Surface waters interactions at slope and catchment scales: implications for landsliding in clayâ€rich slopes. Hydrological Processes, 2017, 31, 364-381.	1.1	18
85	Field investigation of preferential fissure flow paths with hydrochemical analysis of small-scale sprinkling experiments. Earth Surface Dynamics, 2014, 2, 181-195.	1.0	17
86	Structural control on the kinematics of the deep-seated La Clapière landslide revealed by L-band InSAR observations. Landslides, 2016, 13, 1005-1018.	2.7	15
87	Seuils piézométriques pour le déclenchement de glissements de terrain sur les versants côtiers normands, France. Geomorphologie Relief, Processus, Environnement, 2014, 20, 145-158.	0.7	14
88	Structure of the Séchilienne unstable slope from large-scale three-dimensional electrical tomography using a Resistivity Distributed Automated System (R-DAS). Geophysical Journal International, 2019, 219, 129-147.	1.0	13
89	Terrain deformation measurements from optical satellite imagery: The MPIC-OPT processing services for geohazards monitoring. Remote Sensing of Environment, 2022, 274, 112949.	4.6	13
90	Une approche multidisciplinaire pour la connaissance d'un glissement-coulée dans les marnes noires du Callovien-Oxfordien. Revue Française De Géotechnique, 2001, , 15-31.	0.1	12

#	Article	IF	CITATIONS
91	Geomorphology and kinematics of debris flows with high entrainment rates: A case study in the South French Alps. Comptes Rendus - Geoscience, 2011, 343, 777-794.	0.4	11
92	Ground-penetrating radar observations for estimating the vertical displacement of rotational landslides. Natural Hazards and Earth System Sciences, 2015, 15, 1399-1406.	1.5	10
93	Runout modelling and hazard assessment of Tangni debris flow in Garhwal Himalayas, India. Environmental Earth Sciences, 2021, 80, 1.	1.3	9
94	Synoptic Pan-European Landslide Susceptibility Assessment: The ELSUS 1000 v1 Map. , 2014, , 117-122.		8
95	Corrections of surface fissure effect on apparent resistivity measurements. Geophysical Journal International, 2015, 200, 1118-1135.	1.0	8
96	Monitoring of Earth Surface Motion and Geomorphologic Processes by Optical Image Correlation. , 2016, , 147-190.		8
97	Analyse spatiale de la susceptibilité des versants aux glissements de terrains. Comparaison de deux approches spatialisées par SIG. Revue Internationale De Géomatique, 2005, 15, 227-245.	0.2	8
98	Analyse spatiale, évaluation et cartographie du risque glissement de terrain. Revue Internationale De Géomatique, 2006, 16, 499-525.	0.2	8
99	Analyse spatiotemporelle de glissements de terrain littoraux par l'exploitation de données géospatiales multisources. Revue Internationale De Géomatique, 2013, 23, 199-225.	0.2	8
100	Analysis and Uncertainty Quantification of Dynamic Run-Out Model Parameters for Landslides. , 2013, , 315-318.		7
101	Methods for Debris Flow Hazard and Risk Assessment. Advances in Natural and Technological Hazards Research, 2014, , 133-177.	1.1	7
102	Introduction to the thematic volume: issues in landslide process monitoring and understanding. Bulletin - Societie Geologique De France, 2007, 178, 63-64.	0.9	5
103	Multi-scale line detection for landslide fissure mapping. , 2012, , .		5
104	Adaptive spatial sampling with active random forest for object-oriented landslide mapping. , 2012, , .		5
105	Hydrological behaviour of unstable clayâ€shales slopes: the value of crossâ€disciplinary and multitechnological research at different scales. Hydrological Processes, 2012, 26, 2067-2070.	1.1	5
106	Pros and Cons of Structure for Motion Embarked on a Vehicle to Survey Slopes along Transportation Lines Using 3D Georeferenced and Coloured Point Clouds. Remote Sensing, 2018, 10, 1732.	1.8	5
107	Automatic approach for increasing the location accuracy of slow-moving landslide endogenous seismicity: the APOLoc method. Geophysical Journal International, 2018, 215, 1455-1473.	1.0	5
108	Rheological Properties Of Fine-Grained Sediments In Modeling Submarine Mass Movements: The Role		5

#	Article	IF	CITATIONS
109	Introduction: The components of Risk Governance. Advances in Natural and Technological Hazards Research, 2014, , 1-27.	1.1	5
110	Shallow Landsliding. , 2006, , 583-598.		4
111	The impact of an exhibition on risk awareness of the general public in mountainous areas. International Journal of Disaster Risk Reduction, 2017, 25, 36-59.	1.8	4
112	Continuous Monitoring and Near-Real Time Processing of GPS Observations for Landslide Analysis: A Methodological Framework. , 2013, , 201-209.		3
113	Integrated Investigations on Landslides — The Example of the Super Sauze Earthflow. , 2004, , 213-238.		3
114	Spatial distribution and quantification of sediment storages in a "shiny schists―catchment: The Peynin catchment (Queyras, Southern French Alps). Geomorphologie Relief, Processus, Environnement, 2018, 24, 59-76.	0.7	3
115	Sprinkling Tests to Understand Hydrological Behaviour of Mudslide. , 2013, , 469-473.		2
116	Techniques for the Modelling of the Process Systems in Slow and Fast-Moving Landslides. Advances in Natural and Technological Hazards Research, 2014, , 83-129.	1.1	2
117	Terrain Deformation Measurements from Optical Satellite Imagery: On-Line Processing Services for Geohazards Monitoring. , 2021, , .		2
118	Landslide kinematics inferred from in situ measurements: the Cliets rock-slide (Savoie, French Alps). Landslides, 2022, 19, 19-34.	2.7	2
119	Measurement and inversion strategies for 3â€Ð resistivity surveys with vector arrays. Geophysical Prospecting, 0, , .	1.0	2
120	â€~Integration of technologies for landslide monitoring and quantitative hazard assessment'. Engineering Geology, 2012, 128, 1.	2.9	1
121	Performance of Image Correlation Techniques for Landslide Displacement Monitoring. , 2013, , 217-226.		1
122	Innovative Techniques for the Detection and Characterization of the Kinematics of Slow-Moving Landslides. Advances in Natural and Technological Hazards Research, 2014, , 31-56.	1.1	1
123	Innovative Techniques for the Characterization of the Morphology, Geometry and Hydrological Features of Slow-Moving Landslides. Advances in Natural and Technological Hazards Research, 2014, , 57-82.	1.1	1
124	Landslide Information System for Disaster Risk Financing: Earth Observation and Modelling Products for Near-Real- Time Assessment. , 2021, , .		1
125	Index-Oriented Methodologies for Landslide Consequence Analysis: An Application to a Mountain Community in the French Alps. , 2013, , 159-167.		1
126	Regional Rainfall Thresholds for Shallow and Deep-Seated Mass Movements Triggering in the South Eastern French Alps. , 2017, , 183-192.		0

#	Article	IF	CITATIONS
127	IMCLASS – A USER-TAILORED MACHINE LEARNING IMAGE CLASSIFICATION CHAIN FOR CHANGE DETECTION OR LANDCOVER MAPPING. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLIII-B3-2020, 677-683.	0.2	0