Prakash Priyadarshi Praharaj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7384380/publications.pdf

Version: 2024-02-01

41 papers

1,420 citations

304368 22 h-index 36 g-index

43 all docs

43 docs citations

43 times ranked

2411 citing authors

#	Article	IF	CITATIONS
1	The emerging, multifaceted role of mitophagy in cancer and cancer therapeutics. Seminars in Cancer Biology, 2020, 66, 45-58.	4.3	155
2	Circulating tumor cell-derived organoids: Current challenges and promises in medical research and precision medicine. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1869, 117-127.	3.3	106
3	Hypoxia-induced exosome secretion promotes survival of African-American and Caucasian prostate cancer cells. Scientific Reports, 2018, 8, 3853.	1.6	84
4	Plant lectins in cancer therapeutics: Targeting apoptosis and autophagy-dependent cell death. Pharmacological Research, 2019, 144, 8-18.	3.1	83
5	Intricate role of mitochondrial lipid in mitophagy and mitochondrial apoptosis: its implication in cancer therapeutics. Cellular and Molecular Life Sciences, 2019, 76, 1641-1652.	2.4	74
6	Autophagy-modulating phytochemicals in cancer therapeutics: Current evidences and future perspectives. Seminars in Cancer Biology, 2022, 80, 205-217.	4.3	74
7	Exosome proteomic analyses identify inflammatory phenotype and novel biomarkers in African American prostate cancer patients. Cancer Medicine, 2019, 8, 1110-1123.	1.3	69
8	Mitochondrial dysfunction as a driver of NLRP3 inflammasome activation and its modulation through mitophagy for potential therapeutics. International Journal of Biochemistry and Cell Biology, 2021, 136, 106013.	1.2	65
9	ATG14 facilitated lipophagy in cancer cells induce ER stress mediated mitoptosis through a ROS dependent pathway. Free Radical Biology and Medicine, 2017, 104, 199-213.	1.3	60
10	Implications of cancer stem cells in developing therapeutic resistance in oral cancer. Oral Oncology, 2016, 62, 122-135.	0.8	57
11	Epigenetic modifications of autophagy in cancer and cancer therapeutics. Seminars in Cancer Biology, 2020, 66, 22-33.	4.3	43
12	Syntaxin 6â€mediated exosome secretion regulates enzalutamide resistance in prostate cancer. Molecular Carcinogenesis, 2020, 59, 62-72.	1.3	41
13	PUMA dependent mitophagy by Abrus agglutinin contributes to apoptosis through ceramide generation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 480-495.	1.9	37
14	Mitochondrial rewiring through mitophagy and mitochondrial biogenesis in cancer stem cells: A potential target for anti-CSC cancer therapy. Cancer Letters, 2021, 498, 217-228.	3.2	37
15	Terminalia bellirica extract induces anticancer activity through modulation of apoptosis and autophagy in oral squamous cell carcinoma. Food and Chemical Toxicology, 2020, 136, 111073.	1.8	36
16	<i>Abrus</i> agglutinin stimulates BMPâ€2â€dependent differentiation through autophagic degradation of βâ€catenin in colon cancer stem cells. Molecular Carcinogenesis, 2018, 57, 664-677.	1.3	33
17	Molecular interplay of autophagy and endocytosis in human health and diseases. Biological Reviews, 2019, 94, 1576-1590.	4.7	32
18	Deacetylation of LAMP1 drives lipophagyâ€dependent generation of free fatty acids by <i>Abrus</i> agglutinin to promote senescence in prostate cancer. Journal of Cellular Physiology, 2020, 235, 2776-2791.	2.0	30

#	Article	IF	CITATIONS
19	Dysregulation of histone deacetylases in carcinogenesis and tumor progression: a possible link to apoptosis and autophagy. Cellular and Molecular Life Sciences, 2019, 76, 3263-3282.	2.4	29
20	Exosomes secreted by placental stem cells selectively inhibit growth of aggressive prostate cancer cells. Biochemical and Biophysical Research Communications, 2018, 499, 1004-1010.	1.0	27
21	Gamma irradiation promotes chemo-sensitization potential of gallic acid through attenuation of autophagic flux to trigger apoptosis in an NRF2 inactivation signalling pathway. Free Radical Biology and Medicine, 2020, 160, 111-124.	1.3	26
22	Clusterin as modulator of carcinogenesis: A potential avenue for targeted cancer therapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188500.	3.3	25
23	Vorinostat in autophagic cell death: A critical insight into autophagy-mediated, -associated and -dependent cell death for cancer prevention. Drug Discovery Today, 2022, 27, 269-279.	3.2	24
24	Recent progress of autophagy signaling in tumor microenvironment and its targeting for possible cancer therapeutics. Seminars in Cancer Biology, 2022, 85, 196-208.	4.3	23
25	Monitoring and Measuring Mammalian Autophagy. Methods in Molecular Biology, 2018, 1854, 209-222.	0.4	19
26	Secretory clusterin promotes oral cancer cell survival via inhibiting apoptosis by activation of autophagy in AMPK/mTOR/ULK1 dependent pathway. Life Sciences, 2021, 264, 118722.	2.0	18
27	Molecular association of 2-(n -alkylamino)-1,4-naphthoquinone derivatives: Electrochemical, DFT studies and antiproliferative activity against leukemia cell lines. Journal of Molecular Structure, 2016, 1125, 272-281.	1.8	16
28	Inflammasomes in cancer: Effect of epigenetic and autophagic modulations. Seminars in Cancer Biology, 2020, , .	4.3	15
29	Bioactive compounds from marine invertebrates as potent anticancer drugs: the possible pharmacophores modulating cell death pathways. Molecular Biology Reports, 2020, 47, 7209-7228.	1.0	15
30	Oxidative Stress-induced Autophagy Compromises Stem Cell Viability. Stem Cells, 2022, 40, 468-478.	1.4	13
31	Intricate role of mitochondrial calcium signalling in mitochondrial quality control for regulation of cancer cell fate. Mitochondrion, 2021, 57, 230-240.	1.6	11
32	Dysregulation of mitophagy and mitochondrial homeostasis in cancer stem cells: Novel mechanism for anti ancer stem cell argeted cancer therapy. British Journal of Pharmacology, 2022, 179, 5015-5035.	2.7	11
33	Metabostemness in cancer: Linking metaboloepigenetics and mitophagy in remodeling cancer stem cells. Stem Cell Reviews and Reports, 2022, 18, 198-213.	1.7	8
34	Mitochondrial Heterogeneity in Stem Cells. Advances in Experimental Medicine and Biology, 2019, 1123, 179-194.	0.8	7
35	Identification of Annexin A2 as a key mTOR target to induce roller coaster pattern of autophagy fluctuation in stress. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165952.	1.8	6
36	Identification and Characterization of Stem Cells in Oral Cancer. Methods in Molecular Biology, 2018, 2002, 129-139.	0.4	5

#	Article	IF	CITATIONS
37	Mechanistic Insights into Autophagosome–Lysosome Fusion in Cancer Therapeutics. , 2020, , 265-280.		1
38	Abstract 2437: Novel metabolic adaptations support proliferation of African American prostate cancer cells under hypoxia., $2018, \dots$		O
39	Abstract 2653: Usefulness of plasma exosomes to characterize hypoxic phenotype in primary prostate tumors., 2019,,.		O
40	Autophagy: An Agonist and Antagonist with an Interlink of Apoptosis in Cancer., 2020,, 35-60.		0
41	Mitochondrial Biogenesis, Mitophagy, and Mitophagic Cell Death in Cancer Regulation: A Comprehensive Review., 2020,, 141-169.		0