Nanna B Karlsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7383619/publications.pdf

Version: 2024-02-01

43 papers 1,936 citations

394421 19 h-index 315739 38 g-index

75 all docs 75 docs citations

75 times ranked 2441 citing authors

#	Article	IF	Citations
1	Greenland Geothermal Heat Flow Database and Map (Version 1). Earth System Science Data, 2022, 14, 2209-2238.	9.9	9
2	Cryoegg: development and field trials of a wireless subglacial probe for deep, fast-moving ice. Journal of Glaciology, 2021, 67, 627-640.	2.2	6
3	Firn Evolution at Camp Century, Greenland: 1966–2100. Frontiers in Earth Science, 2021, 9, .	1.8	7
4	Ageâ€Depth Stratigraphy of Pine Island Glacier Inferred From Airborne Radar and Iceâ€Core Chronology. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF005927.	2.8	15
5	A first constraint on basal melt-water production of the Greenland ice sheet. Nature Communications, 2021, 12, 3461.	12.8	33
6	Greenland ice velocity maps from the PROMICE project. Earth System Science Data, 2021, 13, 3491-3512.	9.9	23
7	Programme for Monitoring of the Greenland Ice Sheet (PROMICE) automatic weather station data. Earth System Science Data, 2021, 13, 3819-3845.	9.9	70
8	Greenland ice sheet mass balance from 1840 through next week. Earth System Science Data, 2021, 13, 5001-5025.	9.9	26
9	Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nature Geoscience, 2020, 13, 132-137.	12.9	431
10	Surface accumulation in Northern Central Greenland during the last 300 years. Annals of Glaciology, 2020, 61, 214-224.	1.4	14
11	Search and recovery of aircraft parts in ice-sheet crevasse fields using airborne and in situ geophysical sensors. Journal of Glaciology, 2020, 66, 496-508.	2.2	7
12	Hagen Bræ: A Surging Glacier in North Greenland—35ÂYears of Observations. Geophysical Research Letters, 2020, 47, e2019GL085802.	4.0	14
13	Five decades of radioglaciology. Annals of Glaciology, 2020, 61, 1-13.	1.4	74
14	A first chronology for the East Greenland Ice-core Project (EGRIP) over the Holocene and last glacial termination. Climate of the Past, 2020, 16, 2359-2380.	3.4	23
15	Surface velocity of the Northeast Greenland Ice Stream (NEGIS): assessment of interior velocities derived from satellite data by GPS. Cryosphere, 2020, 14, 3487-3502.	3.9	23
16	Non-linear flow modelling of a Martian Lobate Debris Apron. Journal of Glaciology, 2019, 65, 889-899.	2.2	9
17	Modelling the Antarctic Ice Sheet across the mid-Pleistocene transition – implications for Oldest Ice. Cryosphere, 2019, 13, 2023-2041.	3.9	42
18	lce-penetrating radar survey of the subsurface debris field at Camp Century, Greenland. Cold Regions Science and Technology, 2019, 165, 102788.	3.5	12

#	Article	IF	CITATIONS
19	Greenland Ice Sheet solid ice discharge from 1986 through 2017. Earth System Science Data, 2019, 11, 769-786.	9.9	45
20	Limited Impact of Subglacial Supercooling Freezeâ€on for Greenland Ice Sheet Stratigraphy. Geophysical Research Letters, 2018, 45, 1481-1489.	4.0	18
21	Prototype wireless sensors for monitoring subsurface processes in snow and firn. Journal of Glaciology, 2018, 64, 887-896.	2.2	5
22	Promising Oldest Ice sites in East Antarctica based on thermodynamical modelling. Cryosphere, 2018, 12, 2773-2787.	3.9	40
23	Basal conditions at Engabreen, Norway, inferred from surface measurements and inverse modelling. Journal of Glaciology, 2018, 64, 555-567.	2.2	2
24	Erosion at extended continental margins: Insights from new aerogeophysical data in eastern Dronning Maud Land. Gondwana Research, 2018, 63, 105-116.	6.0	11
25	Glaciological characteristics in the Dome Fuji region and new assessment for "Oldest Ice― Cryosphere, 2018, 12, 2413-2424.	3.9	28
26	Large-scale reconstruction of accumulation rates in northern Greenland from radar data. Annals of Glaciology, 2015, 56, 70-78.	1.4	16
27	Automated mapping of near bed radio-echo layer disruptions in the Greenland Ice Sheet. Earth and Planetary Science Letters, 2015, 432, 323-331.	4.4	21
28	Response of the large-scale subglacial drainage system of Northeast Greenland to surface elevation changes. Cryosphere, 2015, 9, 1465-1479.	3.9	17
29	Iceâ€flow structure and ice dynamic changes in the Weddell Sea sector of West Antarctica from radarâ€imaged internal layering. Journal of Geophysical Research F: Earth Surface, 2015, 120, 655-670.	2.8	37
30	Volume of Martian midlatitude glaciers from radar observations and ice flow modeling. Geophysical Research Letters, 2015, 42, 2627-2633.	4.0	42
31	Initial results from geophysical surveys and shallow coring of the Northeast Greenland Ice Stream (NEGIS). Cryosphere, 2014, 8, 1275-1287.	3.9	56
32	Isochronous information in a Greenland ice sheet radio echo sounding data set. Geophysical Research Letters, 2014, 41, 1593-1599.	4.0	16
33	Constraining past accumulation in the central Pine Island Glacier basin, West Antarctica, using radio-echo sounding. Journal of Glaciology, 2014, 60, 553-562.	2.2	17
34	Eemian interglacial reconstructed from a Greenland folded ice core. Nature, 2013, 493, 489-494.	27.8	565
35	Tracing the depth of the Holocene ice in North Greenland from radio-echo sounding data. Annals of Glaciology, 2013, 54, 44-50.	1.4	31
36	A â€~continuity-index' for assessing ice-sheet dynamics from radar-sounded internal layers. Earth and Planetary Science Letters, 2012, 335-336, 88-94.	4.4	25

#	Article	IF	CITATIONS
37	Testing for flow in the north polar layered deposits of Mars using radar stratigraphy and a simple 3D ice-flow model. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	22
38	The internal layering of Pine Island Glacier, West Antarctica, from airborne radar-sounding data. Annals of Glaciology, 2009, 50, 141-146.	1.4	35
39	Accumulation Rates during 1311–2011 CE in North-Central Greenland Derived from Air-Borne Radar Data. Frontiers in Earth Science, 0, 4, .	1.8	12
40	Greenland ice sheet mass balance assessed by PROMICE (1995–2015). Geological Survey of Denmark and Greenland Bulletin, 0, 43, .	2.0	9
41	Update of annual calving front lines for 47 marine terminating outlet glaciers in Greenland (1999–2018). Geological Survey of Denmark and Greenland Bulletin, 0, 43, .	2.0	7
42	Observationally constrained reconstruction of 19th to mid-20th century sea-ice extent off eastern Greenland. Geological Survey of Denmark and Greenland Bulletin, 0, , 83-86.	2.0	0
43	Basal stress controls ice-flow variability during a surge cycle of Hagen Br $ ilde{A}_1^1$, Greenland. Journal of Glaciology, 0 , , 1 - 15 .	2.2	0