
Mark C Allenby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7383407/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biomedical applications of polyethylene. European Polymer Journal, 2019, 118, 412-428.	2.6	107
2	Engineering inkjet bioprinting processes toward translational therapies. Biotechnology and Bioengineering, 2020, 117, 272-284.	1.7	82
3	Cell proliferation and migration explain pore bridging dynamics in 3D printed scaffolds of different pore size. Acta Biomaterialia, 2020, 114, 285-295.	4.1	61
4	Design tools for patient specific and highly controlled melt electrowritten scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 105, 103695.	1.5	39
5	The Effects of COVID-19 on the Placenta During Pregnancy. Frontiers in Immunology, 2021, 12, 743022.	2.2	39
6	Rheological Characterization of Biomaterials Directs Additive Manufacturing of Strontiumâ€6ubstituted Bioactive Glass/Polycaprolactone Microfibers. Macromolecular Rapid Communications, 2019, 40, e1900019.	2.0	38
7	Auxetic tubular scaffolds via melt electrowriting. Materials and Design, 2020, 193, 108787.	3.3	36
8	Crystallization of Proteins at Ultralow Supersaturations Using Novel Three-Dimensional Nanotemplates. Crystal Growth and Design, 2012, 12, 1772-1777.	1.4	32
9	A 3D bioinspired highly porous polymeric scaffolding system for <i>in vitro</i> simulation of pancreatic ductal adenocarcinoma. RSC Advances, 2018, 8, 20928-20940.	1.7	31
10	A deep learning method for automatic segmentation of the bony orbit in MRI and CT images. Scientific Reports, 2021, 11, 13693.	1.6	28
11	Dynamic human erythropoiesis in a three-dimensional perfusion bone marrow biomimicry. Biomaterials, 2019, 188, 24-37.	5.7	25
12	Model-based data analysis of tissue growth in thin 3D printed scaffolds. Journal of Theoretical Biology, 2021, 528, 110852.	0.8	23
13	RGDâ€functionalized polyurethane scaffolds promote umbilical cord blood mesenchymal stem cell expansion and osteogenic differentiation. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 232-243.	1.3	22
14	Antibacterial activity of fractions from three Chumash medicinal plant extracts and <i>in vitro</i> inhibition of the enzyme enoyl reductase by the flavonoid jaceosidin. Natural Product Research, 2017, 31, 707-712.	1.0	18
15	A Quantitative Three-Dimensional Image Analysis Tool for Maximal Acquisition of Spatial Heterogeneity Data. Tissue Engineering - Part C: Methods, 2017, 23, 108-117.	1.1	15
16	Stem cell biomanufacturing under uncertainty: A case study in optimizing red blood cell production. AICHE Journal, 2018, 64, 3011-3022.	1.8	13
17	An advanced prosthetic manufacturing framework for economic personalised ear prostheses. Scientific Reports, 2020, 10, 11453.	1.6	12
18	Ceramic Hollow Fibre Constructs for Continuous Perfusion and Cell Harvest from 3D Hematopoietic Organoids. Stem Cells International, 2018, 2018, 1-14.	1.2	11

MARK C ALLENBY

0

#	Article	IF	CITATIONS
19	Dissolvable 3D printed PVA moulds for melt electrowriting tubular scaffolds with patient-specific geometry. Materials and Design, 2022, 215, 110466.	3.3	11
20	Additive manufacturing enables personalised porous high-density polyethylene surgical implant manufacturing with improved tissue and vascular ingrowth. Applied Materials Today, 2021, 22, 100965.	2.3	10
21	A quantitative analysis of cell bridging kinetics on a scaffold using computer vision algorithms. Acta Biomaterialia, 2021, 136, 429-440.	4.1	8
22	3D Plotting of Calcium Phosphate Cement and Melt Electrowriting of Polycaprolactone Microfibers in One Scaffold: A Hybrid Additive Manufacturing Process. Journal of Functional Biomaterials, 2022, 13, 75.	1.8	8
23	Using melt-electrowritten microfibres for tailoring scaffold mechanics of 3D bioprinted chondrocyte-laden constructs. Bioprinting, 2021, 23, e00158.	2.9	7
24	Image analyses for engineering advanced tissue biomanufacturing processes. Biomaterials, 2022, 284, 121514.	5.7	7
25	Detection of clustered anomalies in single-voxel morphometry as a rapid automated method for identifying intracranial aneurysms. Computerized Medical Imaging and Graphics, 2021, 89, 101888.	3.5	6
26	Personalized Volumetric Tissue Generation by Enhancing Multiscale Mass Transport through 3D Printed Scaffolds in Perfused Bioreactors. Advanced Healthcare Materials, 2022, 11, .	3.9	5
27	A Spatiotemporal Microenvironment Model to Improve Design of a Three-Dimensional Bioreactor for Red Cell Production. Tissue Engineering - Part A, 2021, , .	1.6	4
28	Biofabrication of personalised anatomical models and tools for the clinic. Journal of Cystic Fibrosis, 2019, 18, 161-162.	0.3	3
29	Soft pneumatic actuators for mimicking multi-axial femoropopliteal artery mechanobiology. Biofabrication, 2022, 14, 035005.	3.7	3
30	Bone morphogenetic protein–assisted bone regeneration and applications in biofabrication. , 2020, , 363-391.		2
31	Ultrasound Imaging Offers Promising Alternative to Create 3-D Models for Personalised Auricular Implants. Ultrasound in Medicine and Biology, 2022, 48, 450-459.	0.7	2
32	Development of an ex vivo bone marrow mimicry microenvironment in a novel 3D hollow fibre bioreactor. Experimental Hematology, 2015, 43, S51.	0.2	1
33	Spatiotemporal Mapping of Erythroid, Stromal, and Osteogenic Niche Formation to Support Physiologic Red Cell Production in a Three-Dimensional Hollow Fibre Perfusion Bioreactor. Blood, 2016, 128, 3885-3885.	0.6	1
34	Effect of Oxygen and 3D Microenvironment on Physiologic Erythropoiesis. Blood, 2015, 126, 3600-3600.	0.6	0
35	Early Erythroid Development Is Enhanced with Hypoxia and Terminal Maturation with Normoxia in a 3D Ex Vivo Physiologic Eythropoiesis Model. Blood, 2016, 128, 2453-2453.	0.6	0

Differentiation of Human Pluripotent Stem Cells for Red Blood Cell Production., 2018, , 47-62.

3