Li-Qiang Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7383174/publications.pdf

Version: 2024-02-01

270111 299063 1,930 62 25 42 citations h-index g-index papers 62 62 62 2736 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Environment Adaptable Nanocomposite Organohydrogels for Multifunctional Epidermal Sensors. Advanced Materials Interfaces, 2022, 9, .	1.9	6
2	Molecular Insight into Microstructural and Dynamical Heterogeneities in Magnesium Ionic Liquid Electrolytes. Journal of Physical Chemistry Letters, 2022, 13, 105-111.	2.1	8
3	Unraveling anion effect on lithium ion dynamics and interactions in concentrated ionic liquid electrolyte. Journal of Molecular Liquids, 2022, 361, 119629.	2.3	3
4	Double-network hydrogels with adjustable surface morphology and multifunctional integration for flexible strain sensors. Soft Matter, 2021, 17, 4352-4362.	1.2	13
5	Dually cross-linked single network poly(ionic liquid)/ionic liquid ionogels for a flexible strain-humidity bimodal sensor. Soft Matter, 2021, 17, 10918-10925.	1.2	23
6	A tri-responsive and fast self-healing organogel with stretchability based on multiple dynamic covalent bonds. New Journal of Chemistry, 2020, 44, 1609-1614.	1.4	18
7	Self-Assembled Vesicles Formed by Positional Isomers of Sodium Dodecyl Benzene Sulfonate-Based Pseudogemini Surfactants. Langmuir, 2020, 36, 7593-7601.	1.6	3
8	Alkaline Double-Network Hydrogels with High Conductivities, Superior Mechanical Performances, and Antifreezing Properties for Solid-State Zinc–Air Batteries. ACS Applied Materials & Diterfaces, 2020, 12, 11778-11788.	4.0	116
9	Photoluminescent polymer hydrogels with stimuli-responsiveness constructed from Eu-containing polyoxometalate and imidazolium zwitterions. Soft Matter, 2020, 16, 2311-2320.	1.2	12
10	Anion exchange membrane electrolyte preserving inverse la <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mover accent="true"><mml:mn>3</mml:mn><mml:mo>‾</mml:mo></mml:mover></mml:mrow></mml:math> d bicontinuous cubic phase: Effect of 101113	4.1	15
11	Membrane Science, 2020, 605, 118113. Zwitterionic amphiphiles: their aggregation behavior and applications. Green Chemistry, 2019, 21, 4290-4312.	4.6	72
12	Chirality transfer based on dynamic covalent chemistry: from small chiral molecules to supramolecules. Chemical Communications, 2019, 55, 9861-9864.	2.2	12
13	Ultra-fast self-healing PVA organogels based on dynamic covalent chemistry for dye selective adsorption. New Journal of Chemistry, 2019, 43, 7701-7707.	1.4	26
14	Polyoxometalateâ€Based Photochromic Supramolecular Hydrogels with Highly Ordered Spherical and Cylindrical Micellar Nanostructures. Chemistry - A European Journal, 2019, 25, 6203-6211.	1.7	22
15	Interaction among Worm-like Micelles in Polyoxometalate-Based Supramolecular Hydrogel. Langmuir, 2019, 35, 6137-6144.	1.6	8
16	Visible light-catalytic dehydrogenation of benzylic alcohols to carbonyl compounds by using an eosin Y and nickel–thiolate complex dual catalyst system. Green Chemistry, 2019, 21, 1401-1405.	4.6	43
17	Supramolecular Thermotropic Ionic Liquid Crystals Formed via Self-Assembled Zwitterionic Ionic Liquids. Langmuir, 2019, 35, 1598-1605.	1.6	9
18	Coâ€essembly of Polyoxometalates and Zwitterionic Amphiphiles into Supramolecular Hydrogels: From Crystalline Fibrillar to Amorphous Micellar Networks. Angewandte Chemie, 2018, 130, 4089-4093.	1.6	11

#	Article	IF	CITATIONS
19	Responsive Selfâ€Assembly of Supramolecular Hydrogel Based on Zwitterionic Liquid Asymmetric Gemini Guest. Chemistry - A European Journal, 2018, 24, 10452-10459.	1.7	21
20	Coâ€assembly of Polyoxometalates and Zwitterionic Amphiphiles into Supramolecular Hydrogels: From Crystalline Fibrillar to Amorphous Micellar Networks. Angewandte Chemie - International Edition, 2018, 57, 4025-4029.	7.2	30
21	Multiple-Responsive Hierarchical Self-Assemblies of a Smart Supramolecular Complex: Regulation of Noncovalent Interactions. Langmuir, 2018, 34, 2791-2799.	1.6	14
22	Coassembly of a Polyoxometalate and a Zwitterionic Amphiphile into a Luminescent Hydrogel with Excellent Stimuli Responsiveness. Chemistry - A European Journal, 2018, 24, 16857-16864.	1.7	17
23	Hybrid Poly(ionic liquid) Membranes with in Situ Grown Layered Double Hydroxide and Preserved Liquid Crystal Morphology for Hydroxide Transport. ACS Applied Nano Materials, 2018, 1, 4537-4547.	2.4	15
24	Smart low molecular weight hydrogels with dynamic covalent skeletons. Soft Matter, 2018, 14, 6678-6683.	1.2	10
25	Single lithium-ion polymer electrolytes based on poly(ionic liquid)s for lithium-ion batteries. Soft Matter, 2018, 14, 6313-6319.	1.2	51
26	Facile fabrication of thermo/redox responsive hydrogels based on a dual crosslinked matrix for a smart on–off switch. Soft Matter, 2018, 14, 4327-4334.	1.2	22
27	Photo and Humidity Responsive Mesoporous Poly(ionic Liquid) Membrane for Selective Dye Adsorption. ChemistrySelect, 2017, 2, 1878-1884.	0.7	13
28	Formation of supermolecular chiral gels from l-aspartic acid-based perylenebisimides and benzene dicarboxylic acids. New Journal of Chemistry, 2017, 41, 7643-7649.	1.4	5
29	Reversible helical chirality of perylene bisimide aggregates: amino acid-directed chiral transfer and chiral inversion. Soft Matter, 2017, 13, 3072-3075.	1.2	13
30	Spontaneous wormlike micelles formed in a single-tailed zwitterionic surface-active ionic liquid aqueous solution. Soft Matter, 2017, 13, 2543-2548.	1.2	27
31	The facile construction of an anion exchange membrane with 3D interconnected ionic nano-channels. Chemical Communications, 2017, 53, 767-770.	2.2	14
32	Lithium-Containing Zwitterionic Poly(Ionic Liquid)s as Polymer Electrolytes for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2017, 121, 17756-17763.	1.5	58
33	Low-Molecular-Weight Supramolecular Ionogel Based on Host–Guest Interaction. Langmuir, 2017, 33, 13982-13989.	1.6	36
34	Mechanically strong ionogels formed by immobilizing ionic liquid in polyzwitterion networks. Journal of Molecular Liquids, 2017, 248, 759-766.	2.3	34
35	Aggregation behavior of zwitterionic surface active ionic liquids with different counterions, cations, and alkyl chains. RSC Advances, 2016, 6, 27370-27377.	1.7	13
36	Controllable hierarchical self-assembly of gemini supra-amphiphiles: the effect of spacer length. Soft Matter, 2016, 12, 8682-8689.	1.2	12

#	Article	IF	CITATIONS
37	Anion exchange membranes with well-defined ion transporting nanochannels via self-assembly of polymerizable ionic liquids. Journal of Materials Chemistry A, 2016, 4, 13316-13323.	5.2	21
38	Photoresponsive Self-Assembly of Surface Active Ionic Liquid. Langmuir, 2016, 32, 8163-8170.	1.6	41
39	Wormlike micelle templated synthesis of mono- and bi-metallic nanochain networks with adjustable structure and constituents. RSC Advances, 2016, 6, 67495-67501.	1.7	4
40	Poly(ionic liquid) hydrogels exhibiting superior mechanical and electrochemical properties as flexible electrolytes. Journal of Materials Chemistry A, 2016, 4, 1112-1118.	5.2	72
41	Facile preparation of supramolecular ionogels exhibiting high temperature durability as solid electrolytes. New Journal of Chemistry, 2016, 40, 1169-1174.	1.4	10
42	Spontaneous Vesicle Phase Formation by Linear Pseudo-Oligomeric Surfactant in Aqueous Solutions. Langmuir, 2015, 31, 2281-2287.	1.6	30
43	Gemini supra-amphiphiles with finely-controlled self-assemblies. Soft Matter, 2015, 11, 4075-4080.	1.2	32
44	Temperature-responsive proton-conductive liquid crystals formed by the self-assembly of zwitterionic ionic liquids. RSC Advances, 2015, 5, 63732-63737.	1.7	18
45	Controlled topologies and self-assembly behaviors of oligomeric supra-amphiphiles. Chemical Communications, 2015, 51, 15700-15703.	2.2	20
46	Facile synthesis of gold and gold-based alloy nanowire networks using wormlike micelles as soft templates. Chemical Communications, 2015, 51, 843-846.	2.2	47
47	Nanostructured Proton Conductors Formed via in Situ Polymerization of Ionic Liquid Crystals. ACS Applied Materials & Samp; Interfaces, 2014, 6, 21970-21977.	4.0	39
48	Zwitterionic vesicles with AuCl ₄ ^{â°'} counterions as soft templates for the synthesis of gold nanoplates and nanospheres. Chemical Communications, 2014, 50, 8783.	2.2	29
49	Highly efficient and selective photocatalytic hydrogenation of functionalized nitrobenzenes. Green Chemistry, 2014, 16, 1082-1086.	4.6	175
50	Spontaneous vesicle phase formation by pseudogemini surfactants in aqueous solutions. Soft Matter, 2014, 10, 5463.	1.2	42
51	First observation of rich lamellar structures formed by a single-tailed amphiphilic ionic liquid in aqueous solutions. Chemical Communications, 2013, 49, 11388.	2.2	32
52	Aggregation Behavior of 1-Dodecyl-3-methylimidazolium Bromide in Aqueous Solution: Effect of Ionic Liquids with Aromatic Anions. Langmuir, 2013, 29, 6213-6220.	1.6	65
53	Nanostructured Aqueous Lithium-Ion Conductors Formed by the Self-Assembly of Imidazolium-Type Zwitterions. ACS Applied Materials & Samp; Interfaces, 2013, 5, 13312-13317.	4.0	42
54	Aggregation Behavior of Surface Active Imidazolium Ionic Liquids in Ethylammonium Nitrate: Effect of Alkyl Chain Length, Cations, and Counterions. Journal of Physical Chemistry B, 2012, 116, 2162-2172.	1.2	76

#	Article	IF	CITATIONS
55	Aggregation Behavior of Long-Chain <i>N</i> -Aryl Imidazolium Bromide in Aqueous Solution. Langmuir, 2011, 27, 1618-1625.	1.6	131
56	Aggregation behavior of a chiral long-chain ionic liquid in aqueous solution. Journal of Colloid and Interface Science, 2010, 343, 94-101.	5.0	72
57	Self-Aggregation Behavior of Fluorescent Carbazole-Tailed Imidazolium Ionic Liquids in Aqueous Solutions. Journal of Physical Chemistry B, 2010, 114, 340-348.	1.2	92
58	Probing Cellular Binding of Dendrofullerene by <i>inâ€situ</i> Electrochemical Contact Angle Measurement. Chinese Journal of Chemistry, 2008, 26, 116-120.	2.6	4
59	Enthalpic Pairwise Interactions between Some Amino Acids and 2-Butanone in Aqueous Solutions at 298.15 K. Journal of Chemical & Engineering Data, 2007, 52, 1715-1719.	1.0	4
60	Rheological Properties of Anionic Surfactant Solutions in the Presence of Al3+Counterion. Journal of Dispersion Science and Technology, 2001, 22, 421-429.	1.3	2
61	THE EFFECT OF BENZYL ALCOHOL ON THE MICELLAR PROPERTIES OF CTAB IN KBr SOLUTION. Journal of Dispersion Science and Technology, 2000, 21, 605-613.	1.3	4
62	Aggregation Behavior of Nonionic Clycolipid Vesicles in Acidic Region. Journal of Dispersion Science and Technology, 2000, 21, 907-913.	1.3	1