## Robert F Cook

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7383138/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Direct Observation and Analysis of Indentation Cracking in Glasses and Ceramics. Journal of the American Ceramic Society, 1990, 73, 787-817.                                                                   | 1.9 | 935       |
| 2  | Amorphization and Conductivity of Silicon and Germanium Induced by Indentation. Physical Review<br>Letters, 1988, 60, 2156-2159.                                                                               | 2.9 | 404       |
| 3  | Mechanical Behavior of Alumina-Silicon Carbide "Nanocomposites". Journal of the American Ceramic<br>Society, 1993, 76, 503-510.                                                                                | 1.9 | 335       |
| 4  | Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials. Journal of Materials Research, 2003, 18, 139-150.                                                                    | 1.2 | 288       |
| 5  | Diameter-Dependent Radial and Tangential Elastic Moduli of ZnO Nanowires. Nano Letters, 2007, 7,<br>3691-3697.                                                                                                 | 4.5 | 278       |
| 6  | Microstructure-Strength Properties in Ceramics: I, Effect of Crack Size on Toughness. Journal of the<br>American Ceramic Society, 1985, 68, 604-615.                                                           | 1.9 | 237       |
| 7  | Mechanical properties of block copolymer vesicle and micelle modified epoxies. Journal of Polymer<br>Science, Part B: Polymer Physics, 2003, 41, 2444-2456.                                                    | 2.4 | 213       |
| 8  | Micellar structure and mechanical properties of block copolymer-modified epoxies. Journal of<br>Polymer Science, Part B: Polymer Physics, 2001, 39, 2996-3010.                                                 | 2.4 | 194       |
| 9  | A practical guide for analysis of nanoindentation data. Journal of the Mechanical Behavior of<br>Biomedical Materials, 2009, 2, 396-407.                                                                       | 1.5 | 185       |
| 10 | Microhardness, toughness, and modulus of Mohs scale minerals. American Mineralogist, 2006, 91,<br>135-142.                                                                                                     | 0.9 | 184       |
| 11 | A Modified Indentation Toughness Technique. Journal of the American Ceramic Society, 1983, 66, c200-c201.                                                                                                      | 1.9 | 167       |
| 12 | Strength and sharp contact fracture of silicon. Journal of Materials Science, 2006, 41, 841-872.                                                                                                               | 1.7 | 167       |
| 13 | Fracture toughness measurements of YBa2Cu3Oxsingle crystals. Applied Physics Letters, 1987, 51, 454-456.                                                                                                       | 1.5 | 133       |
| 14 | Electrical resistance of metallic contacts on silicon and germanium during indentation. Journal of<br>Materials Research, 1992, 7, 961-972.                                                                    | 1.2 | 132       |
| 15 | Crack resistance by interfacial bridging: Its role in determining strength characteristics. Journal of<br>Materials Research, 1987, 2, 345-356.                                                                | 1.2 | 121       |
| 16 | Hardness, toughness, and modulus of some common metamorphic minerals. American Mineralogist, 2007, 92, 281-288.                                                                                                | 0.9 | 105       |
| 17 | Theory of Fatigue for Brittle Flaws Originating from Residual Stress Concentrations. Journal of the American Ceramic Society, 1983, 66, 314-321.                                                               | 1.9 | 99        |
| 18 | The effect of grain size on microstructure and stress relaxation in polycrystalline<br>Y <sub>1</sub> Ba <sub>2</sub> Cu <sub>3</sub> O <sub>7â^Î′</sub> . Journal of Materials Research, 1989, 4,<br>248-256. | 1.2 | 98        |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Stressâ€Corrosion Cracking of Lowâ€Dielectricâ€Constant Spinâ€Onâ€Class Thin Films. Journal of the<br>Electrochemical Society, 1999, 146, 4439-4448.                                                                        | 1.3 | 96        |
| 20 | Fracture strength of micro- and nano-scale silicon components. Applied Physics Reviews, 2015, 2, .                                                                                                                          | 5.5 | 96        |
| 21 | Adhesion between Immiscible Polymers Correlated with Interfacial Entanglements. Macromolecules, 2003, 36, 2808-2815.                                                                                                        | 2.2 | 94        |
| 22 | Influence of deposition conditions on mechanical properties of low-pressure chemical vapor deposited low-stress silicon nitride films. Journal of Applied Physics, 2003, 94, 6915-6922.                                     | 1.1 | 85        |
| 23 | Kinetics of Indentation Cracking in Glass. Journal of the American Ceramic Society, 1993, 76, 1096-1105.                                                                                                                    | 1.9 | 84        |
| 24 | Simplified Area Function for Sharp Indenter Tips in Depth-sensing Indentation. Journal of Materials<br>Research, 2002, 17, 1143-1146.                                                                                       | 1.2 | 80        |
| 25 | The effect of lateral crack growth on the strength of contact flaws in brittle materials. Journal of<br>Materials Research, 1986, 1, 589-600.                                                                               | 1.2 | 77        |
| 26 | Calcium Segregation to Grain Boundaries in Alumina. Journal of the American Ceramic Society, 1988, 71, 50-58.                                                                                                               | 1.9 | 75        |
| 27 | Ultimate Bending Strength of Si Nanowires. Nano Letters, 2012, 12, 2599-2604.                                                                                                                                               | 4.5 | 74        |
| 28 | Probing material properties with sharp indenters: a retrospective. Journal of Materials Science, 2012, 47, 1-22.                                                                                                            | 1.7 | 73        |
| 29 | Comparison of nanoscale measurements of strain and stress using electron back scattered diffraction and confocal Raman microscopy. Applied Physics Letters, 2008, 93, .                                                     | 1.5 | 72        |
| 30 | Elastic and adhesive properties of alkanethiol self-assembled monolayers on gold. Applied Physics<br>Letters, 2009, 94, .                                                                                                   | 1.5 | 70        |
| 31 | Polymeric Organicâ^'Inorganic Hybrid Nanocomposites:Â Preparation of Polyimide-Modified<br>Poly(silsesquioxane) Using Functionalized Poly(amic acid alkyl ester) Precursors. Macromolecules,<br>1997, 30, 8512-8515.        | 2.2 | 67        |
| 32 | Mapping the elastic properties of granular Au films by contact resonance atomic force microscopy.<br>Nanotechnology, 2008, 19, 235701.                                                                                      | 1.3 | 67        |
| 33 | The Compelling Case for Indentation as a Functional Exploratory and Characterization Tool. Journal of the American Ceramic Society, 2015, 98, 2671-2680.                                                                    | 1.9 | 67        |
| 34 | Elastic moduli of faceted aluminum nitride nanotubes measured by contact resonance atomic force microscopy. Nanotechnology, 2009, 20, 035706.                                                                               | 1.3 | 66        |
| 35 | Lanthanide gallate perovskite-type substrates for epitaxial, high-T <sub>c</sub> superconducting<br>Ba <sub>2</sub> YCu <sub>3</sub> O <sub>7-Î</sub> films. IBM Journal of Research and Development, 1990,<br>34, 916-926. | 3.2 | 64        |
| 36 | Stress hysteresis during thermal cycling of plasma-enhanced chemical vapor deposited silicon oxide films. Journal of Applied Physics, 2002, 91, 1988-1992.                                                                  | 1.1 | 64        |

| #  | Article                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Fracture of ferroelectric ceramics. Ferroelectrics, 1983, 50, 267-272.                                                                                                        | 0.3 | 62        |
| 38 | Sharp probes of varying acuity: Instrumented indentation and fracture behavior. Journal of Materials Research, 2004, 19, 165-175.                                             | 1.2 | 60        |
| 39 | Massive stress changes in plasma-enhanced chemical vapor deposited silicon nitride films on thermal cycling. Thin Solid Films, 2004, 460, 7-16.                               | 0.8 | 60        |
| 40 | <i>In Situ</i> Cube orner Indentation of Soda–Lime Glass and Fused Silica. Journal of the American<br>Ceramic Society, 2004, 87, 1494-1501.                                   | 1.9 | 59        |
| 41 | <i>In situ</i> observation of the indentation-induced phase transformation of silicon thin films.<br>Physical Review B, 2012, 85, .                                           | 1.1 | 59        |
| 42 | Critique of materialsâ€based models of ductile machining in brittle solids. Journal of the American<br>Ceramic Society, 2020, 103, 6096-6100.                                 | 1.9 | 59        |
| 43 | Mechanical failure of human fetal membrane tissues. Journal of Materials Science: Materials in<br>Medicine, 2004, 15, 651-658.                                                | 1.7 | 58        |
| 44 | Structural, Electrical, and Mechanical Properties Development during Curing of Low-k Hydrogen<br>Silsesquioxane Films. Journal of the Electrochemical Society, 2002, 149, F9. | 1.3 | 57        |
| 45 | Uniaxial and biaxial mechanical behavior of human amnion. Journal of Materials Research, 2005, 20,<br>2902-2909.                                                              | 1.2 | 57        |
| 46 | Microstructural Effects on Grinding of Alumina and Glass-Ceramics. Journal of the American Ceramic Society, 1987, 70, C-139-C-140.                                            | 1.9 | 55        |
| 47 | Crack propagation thresholds: A measure of surface energy. Journal of Materials Research, 1986, 1,<br>852-860.                                                                | 1.2 | 51        |
| 48 | Nanoscale mapping of contact stiffness and damping by contact resonance atomic force microscopy.<br>Nanotechnology, 2012, 23, 215703.                                         | 1.3 | 49        |
| 49 | Mechanical properties and structure of the biological multilayered material system, Atractosteus spatula scales. Acta Biomaterialia, 2013, 9, 5289-5296.                      | 4.1 | 46        |
| 50 | Fracture Properties of Polycrystalline YBa <sub>2</sub> Cu <sub>3</sub> O <sub>X</sub> . Advanced<br>Ceramic Materials, 1987, 2, 606-614.                                     | 2.3 | 45        |
| 51 | Nanomechanical Properties of Thin Films of Type I Collagen Fibrils. Langmuir, 2010, 26, 3629-3636.                                                                            | 1.6 | 45        |
| 52 | Surface Stress Effects on Indentation Fracture Sequences. Journal of the American Ceramic Society, 1990, 73, 2619-2627.                                                       | 1.9 | 44        |
| 53 | Depth-sensing indentation at macroscopic dimensions. Journal of Materials Research, 2002, 17, 2679-2690.                                                                      | 1.2 | 44        |
| 54 | Depth-sensing indentation response of ordered silica foam. Journal of Materials Research, 2004, 19, 260-271.                                                                  | 1.2 | 44        |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Effect of crystallographic orientation on phase transformations during indentation of silicon.<br>Journal of Materials Research, 2009, 24, 1172-1183.                                             | 1.2 | 44        |
| 56 | Microstructure-Strength Properties in Ceramics: II, Fatigue Relations. Journal of the American<br>Ceramic Society, 1985, 68, 616-623.                                                             | 1.9 | 43        |
| 57 | Force measurement using an ac atomic force microscope. Journal of Applied Physics, 1990, 67, 4045-4052.                                                                                           | 1.1 | 41        |
| 58 | Instrumentation of a conventional hardness tester for load-displacement measurement during indentation. Journal of Materials Research, 1990, 5, 847-851.                                          | 1.2 | 41        |
| 59 | Surface effects on the elastic modulus of Te nanowires. Applied Physics Letters, 2008, 92, 241908.                                                                                                | 1.5 | 40        |
| 60 | Sigmoidal Indentation-Strength Characteristics of Polycrystalline Alumina. Journal of the American<br>Ceramic Society, 1994, 77, 303-314.                                                         | 1.9 | 39        |
| 61 | Indentation crack initiation in ion-exchanged aluminosilicate glass. Journal of Materials Science, 2004, 39, 2399-2410.                                                                           | 1.7 | 39        |
| 62 | Four-point bend adhesion measurements of copper and permalloy systems. Engineering Fracture Mechanics, 2004, 71, 245-261.                                                                         | 2.0 | 39        |
| 63 | Compressive Stress Effect on the Radial Elastic Modulus of Oxidized Si Nanowires. Nano Letters, 2010, 10, 2031-2037.                                                                              | 4.5 | 38        |
| 64 | Indentation responses of time-dependent films on stiff substrates. Journal of Materials Research, 2004, 19, 2487-2497.                                                                            | 1.2 | 37        |
| 65 | Radial Fracture During Indentation by Acute Probes: I, Description by an Indentation Wedging Model.<br>International Journal of Fracture, 2005, 136, 237-264.                                     | 1.1 | 37        |
| 66 | Organosilicate Spin-on Glasses. Journal of the Electrochemical Society, 2004, 151, F37.                                                                                                           | 1.3 | 36        |
| 67 | Stress hysteresis and mechanical properties of plasma-enhanced chemical vapor deposited dielectric films. Journal of Applied Physics, 2004, 95, 967-976.                                          | 1.1 | 35        |
| 68 | Phase-Separated Inorganic-Organic Hybrids for Microelectronic Applications. MRS Bulletin, 1997, 22, 44-48.                                                                                        | 1.7 | 35        |
| 69 | Uniaxial stress–relaxation and stress–strain responses of human amnion. Journal of Materials<br>Science: Materials in Medicine, 2004, 15, 619-624.                                                | 1.7 | 33        |
| 70 | Origin of Adhesion in Humid Air. Langmuir, 2008, 24, 1873-1877.                                                                                                                                   | 1.6 | 33        |
| 71 | Elastic modulus of low- <i>k</i> dielectric thin films measured by load-dependent contact-resonance<br>atomic force microscopy. Journal of Materials Research, 2009, 24, 2960-2964.               | 1.2 | 33        |
| 72 | Etching Process Effects on Surface Structure, Fracture Strength, and Reliability of Single-Crystal<br>Silicon Theta-Like Specimens. Journal of Microelectromechanical Systems, 2013, 22, 589-602. | 1.7 | 33        |

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Mechanical measurements of heterogeneity and length scale effects in PEG-based hydrogels. Soft<br>Matter, 2015, 11, 7191-7200.                                                              | 1.2 | 33        |
| 74 | Nanoindentation behavior and mechanical properties measurement of polymeric materials.<br>International Journal of Materials Research, 2007, 98, 370-378.                                   | 0.1 | 31        |
| 75 | Direct observation of phase transformation anisotropy in indented silicon studied by confocal Raman spectroscopy. Physical Review B, 2011, 83, .                                            | 1.1 | 31        |
| 76 | Lateral Cracks and Microstructural Effects in the Indentation Fracture of Yttria. Journal of the American Ceramic Society, 1990, 73, 1873-1878.                                             | 1.9 | 30        |
| 77 | Rapid measurement of static and dynamic surface forces. Applied Physics Letters, 1990, 56, 2408-2410.                                                                                       | 1.5 | 30        |
| 78 | Trapped cracks at indentations. Journal of Materials Science, 1994, 29, 2133-2142.                                                                                                          | 1.7 | 30        |
| 79 | High resolution surface morphology measurements using EBSD cross-correlation techniques and AFM. Ultramicroscopy, 2011, 111, 1206-1213.                                                     | 0.8 | 29        |
| 80 | Bending manipulation and measurements of fracture strength of silicon and oxidized silicon nanowires by atomic force microscopy. Journal of Materials Research, 2012, 27, 562-570.          | 1.2 | 29        |
| 81 | Technique for estimating fracture resistance of cultured neocartilage. Journal of Materials Science:<br>Materials in Medicine, 2001, 12, 327-332.                                           | 1.7 | 28        |
| 82 | Mechanical and thermal properties of physical vapour deposited alumina films Part II Elastic, plastic, fracture, and adhesive behaviour. Journal of Materials Science, 2004, 39, 4809-4819. | 1.7 | 28        |
| 83 | Radial Fracture During Indentation by Acute Probes: II, Experimental Observations of Cube-corner and<br>Vickers Indentation. International Journal of Fracture, 2005, 136, 265-284.         | 1.1 | 28        |
| 84 | Stress development kinetics in plasma-enhanced chemical-vapor-deposited silicon nitride films.<br>Journal of Applied Physics, 2005, 97, 114914.                                             | 1.1 | 28        |
| 85 | Strength distribution of single-crystal silicon theta-like specimens. Scripta Materialia, 2010, 63, 422-425.                                                                                | 2.6 | 27        |
| 86 | Mechanism of nanoparticle manipulation by scanning tunnelling microscopy. Nanotechnology, 2006, 17, 5519-5524.                                                                              | 1.3 | 26        |
| 87 | Measurement of residual stress field anisotropy at indentations in silicon. Scripta Materialia, 2010, 63, 512-515.                                                                          | 2.6 | 25        |
| 88 | <i>In situ</i> spectroscopic study of the plastic deformation of amorphous silicon under nonhydrostatic conditions induced by indentation. Physical Review B, 2015, 92, .                   | 1.1 | 25        |
| 89 | Porous Organosilicates for On-Chip Dielectric Applications. Materials Research Society Symposia<br>Proceedings, 1999, 565, 3.                                                               | 0.1 | 23        |
| 90 | Mechanisms Active during Fracture under Constraint. MRS Bulletin, 2002, 27, 45-51.                                                                                                          | 1.7 | 23        |

| #   | Article                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Organosilicate Spin-On Glasses. Journal of the Electrochemical Society, 2004, 151, F45.                                                                                                         | 1.3 | 23        |
| 92  | Deformation and fracture of single-crystal silicon theta-like specimens. Journal of Materials Research, 2011, 26, 2575-2589.                                                                    | 1.2 | 23        |
| 93  | Surface-engineered nanomaterials as X-ray absorbing adjuvant agents for Auger-mediated chemo-radiation. Nanoscale, 2013, 5, 5252.                                                               | 2.8 | 22        |
| 94  | Multiâ€ <b>S</b> cale Effects in the Strength of Ceramics. Journal of the American Ceramic Society, 2015, 98, 2933-2947.                                                                        | 1.9 | 22        |
| 95  | Designing a standard for strain mapping: HR-EBSD analysis of SiGe thin film structures on Si.<br>Ultramicroscopy, 2015, 148, 94-104.                                                            | 0.8 | 22        |
| 96  | Predicting strength distributions of MEMS structures using flaw size and spatial density.<br>Microsystems and Nanoengineering, 2019, 5, 49.                                                     | 3.4 | 22        |
| 97  | Dynamic fatigue of brittle materials containing indentation line flaws. Journal of Materials Science, 1983, 18, 1306-1314.                                                                      | 1.7 | 21        |
| 98  | Elastic, Adhesive, and Charge Transport Properties of a Metalâ^'Moleculeâ^'Metal Junction: The Role of<br>Molecular Orientation, Order, and Coverage. Langmuir, 2010, 26, 1688-1699.            | 1.6 | 21        |
| 99  | Nanomechanical Properties of Polyethylene Glycol Brushes on Gold Substrates. Journal of Physical<br>Chemistry B, 2012, 116, 3138-3147.                                                          | 1.2 | 21        |
| 100 | In situ observation of the spatial distribution of crystalline phases during pressure-induced transformations of indented silicon thin films. Journal of Materials Research, 2015, 30, 390-406. | 1.2 | 21        |
| 101 | Stressâ€corrosion cracking in silicon. Applied Physics Letters, 1990, 56, 1962-1964.                                                                                                            | 1.5 | 20        |
| 102 | Indentation fracture of low-dielectric constant films: Part I. Experiments and observations. Journal of Materials Research, 2008, 23, 2429-2442.                                                | 1.2 | 20        |
| 103 | Indentation device for <i>in situ</i> Raman spectroscopic and optical studies. Review of Scientific<br>Instruments, 2012, 83, 125106.                                                           | 0.6 | 20        |
| 104 | Material Flaw Populations and Component Strength Distributions in the Context of the Weibull<br>Function. Experimental Mechanics, 2019, 59, 279-293.                                            | 1.1 | 20        |
| 105 | Contact-resonance atomic force microscopy for nanoscale elastic property measurements:<br>Spectroscopy and imaging. Ultramicroscopy, 2009, 109, 929-936.                                        | 0.8 | 19        |
| 106 | Stress mapping of micromachined polycrystalline silicon devices via confocal Raman microscopy.<br>Applied Physics Letters, 2014, 104, .                                                         | 1.5 | 19        |
| 107 | Influence of crack velocity thresholds on stabilized nonequilibrium fracture. Journal of Applied Physics, 1989, 65, 1902-1910.                                                                  | 1.1 | 18        |
| 108 | Grain-size effects in the indentation fracture of MgO. Journal of Materials Science, 1992, 27, 4751-4761.                                                                                       | 1.7 | 18        |

| #   | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Rheological and mechanical behavior of blends of styrene-butadiene rubber with polypropylene.<br>Polymer Engineering and Science, 2005, 45, 1487-1497.                                                        | 1.5 | 18        |
| 110 | Micro-scale measurement and modeling of stress in silicon surrounding a tungsten-filled through-silicon via. Journal of Applied Physics, 2011, 110, 073517.                                                   | 1.1 | 18        |
| 111 | Assessing strain mapping by electron backscatter diffraction and confocal Raman microscopy using wedge-indented Si. Ultramicroscopy, 2016, 163, 75-86.                                                        | 0.8 | 18        |
| 112 | Probing the Nanoscale. Science, 2010, 328, 183-184.                                                                                                                                                           | 6.0 | 17        |
| 113 | Fracture sequences during elastic–plastic indentation of brittle materials. Journal of Materials<br>Research, 2019, 34, 1633-1644.                                                                            | 1.2 | 17        |
| 114 | Trapped cracks at indentations. Journal of Materials Science, 1994, 29, 2192-2204.                                                                                                                            | 1.7 | 16        |
| 115 | Indentation fracture of low-dielectric constant films: Part II. Indentation fracture mechanics model.<br>Journal of Materials Research, 2008, 23, 2443-2457.                                                  | 1.2 | 16        |
| 116 | Toughness urve Behavior of an Aluminaâ€Mullite Composite. Journal of the American Ceramic Society,<br>1998, 81, 2613-2623.                                                                                    | 1.9 | 15        |
| 117 | Orientation, stress, and strain in an (001) barium titanate single crystal with 90° lamellar domains<br>determined using electron backscatter diffraction. Journal of Materials Science, 2014, 49, 2213-2224. | 1.7 | 15        |
| 118 | Mapping viscoelastic and plastic properties of polymers and polymer-nanotube composites using instrumented indentation. Journal of Materials Research, 2016, 31, 2347-2360.                                   | 1.2 | 15        |
| 119 | Quantitative mapping of stress heterogeneity in polycrystalline alumina using hyperspectral fluorescence microscopy. Acta Materialia, 2016, 106, 272-282.                                                     | 3.8 | 15        |
| 120 | Fracture mechanics of sharp scratch strength of polycrystalline alumina. Journal of the American<br>Ceramic Society, 2017, 100, 1146-1160.                                                                    | 1.9 | 15        |
| 121 | Properties Development During Curing of Low Dielectric-Constant Spin-On Glasses. Materials<br>Research Society Symposia Proceedings, 1998, 511, 33.                                                           | 0.1 | 14        |
| 122 | Toughening of an Alumina—Mullite Composite by Unbroken Bridging Elements. Journal of the<br>American Ceramic Society, 2000, 83, 833-840.                                                                      | 1.9 | 14        |
| 123 | Determination of residual stress distributions in polycrystalline alumina using fluorescence microscopy. Materials and Design, 2016, 107, 478-490.                                                            | 3.3 | 14        |
| 124 | In situ observations of Berkovich indentation induced phase transitions in crystalline silicon films.<br>Scripta Materialia, 2016, 120, 19-22.                                                                | 2.6 | 14        |
| 125 | Deformation and Fracture by Sharp Rolling Contacts. Journal of the American Ceramic Society, 1994, 77, 1263-1273.                                                                                             | 1.9 | 13        |
| 126 | Hydrogen diffusion as the rate-limiting mechanism of stress development in dielectric films. Applied Physics Letters, 2004, 85, 404-406.                                                                      | 1.5 | 13        |

| #   | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | A critical evaluation of indentation crack lengths in air. Journal of the American Ceramic Society, 2020, 103, 2278-2295.                                                                                  | 1.9 | 13        |
| 128 | Mechanical Properties of Low Dielectric-Constant Organic-Inorganic Hybrids. Materials Research<br>Society Symposia Proceedings, 1999, 576, 301.                                                            | 0.1 | 12        |
| 129 | Indentation-induced deformation at ultramicroscopic and macroscopic contacts. Journal of<br>Materials Research, 2004, 19, 124-130.                                                                         | 1.2 | 12        |
| 130 | Accurate spring constant calibration for very stiff atomic force microscopy cantilevers. Review of Scientific Instruments, 2013, 84, 113706.                                                               | 0.6 | 12        |
| 131 | Review: Coefficients for Stress, Temperature, and Composition Effects in Fluorescence Measurements of Alumina. Journal of Research of the National Institute of Standards and Technology, 2017, 122, 1-26. | 0.4 | 12        |
| 132 | Effective-medium theory for the fracture of fractal porous media. Physical Review B, 1989, 39, 2811-2814.                                                                                                  | 1.1 | 11        |
| 133 | Determination of ceramic flaw populations from component strengths. Journal of the American<br>Ceramic Society, 2019, 102, 4794-4808.                                                                      | 1.9 | 11        |
| 134 | Mechanical and thermal properties of physical vapour deposited alumina films Part I Thermal stability.<br>Journal of Materials Science, 2004, 39, 4799-4807.                                               | 1.7 | 10        |
| 135 | Toughening of a Cordierite Glass-Ceramic by Compressive Surface Layers. Journal of the American<br>Ceramic Society, 2005, 88, 2798-2808.                                                                   | 1.9 | 10        |
| 136 | Quantitative Scanning Probe Microscopy for Nanomechanical Forensics. Experimental Mechanics, 2017, 57, 1045-1055.                                                                                          | 1.1 | 10        |
| 137 | Exploring the Relationship of Scratch Resistance, Hardness, and other Physical Properties of Minerals<br>using Mohs Scale Minerals. Journal of Geoscience Education, 2007, 55, 56-61.                      | 0.8 | 9         |
| 138 | Mechanical and electrical coupling at metal-insulator-metal nanoscale contacts. Applied Physics<br>Letters, 2008, 93, 203102.                                                                              | 1.5 | 9         |
| 139 | Prototype cantilevers for quantitative lateral force microscopy. Review of Scientific Instruments, 2011, 82, 093706.                                                                                       | 0.6 | 9         |
| 140 | Development of a precision nanoindentation platform. Review of Scientific Instruments, 2013, 84, 075110.                                                                                                   | 0.6 | 9         |
| 141 | Interfacial Mechanical Properties of \$n\$ -Alkylsilane Monolayers on Silicon Substrates. Journal of<br>Microelectromechanical Systems, 2013, 22, 34-43.                                                   | 1.7 | 9         |
| 142 | Strength of brittle materials in moderately corrosive environments. Journal of the American Ceramic Society, 2018, 101, 1684-1695.                                                                         | 1.9 | 9         |
| 143 | Cone Crack Nucleation at Sharp Contacts. Journal of the American Ceramic Society, 1992, 75, 2877-2880.                                                                                                     | 1.9 | 8         |
| 144 | Chemical vapor deposition of an aluminum nitride–diamond composite in a triple torch plasma<br>reactor. Journal of Materials Research, 2001, 16, 469-477.                                                  | 1.2 | 8         |

Robert F Cook

| #   | Article                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Near-theoretical fracture strengths in native and oxidized silicon nanowires. Nanotechnology, 2016, 27, 31LT02.                                                             | 1.3 | 8         |
| 146 | Longâ€ŧerm ceramic reliability analysis including the crackâ€velocity threshold and the "bathtub―curve.<br>Journal of the American Ceramic Society, 2018, 101, 5732-5744.   | 1.9 | 8         |
| 147 | On the failure and fracture of hydrogels for cartilage replacement. JPhys Materials, 2021, 4, 021001.                                                                       | 1.8 | 8         |
| 148 | High-throughput bend-strengths of ultra-small polysilicon MEMS components. Applied Physics<br>Letters, 2021, 118, 201601.                                                   | 1.5 | 8         |
| 149 | Reply to "Comment on 'Role of Grain Size in the Strength and R-Curve Properties of Alumina'". Journal of the American Ceramic Society, 1993, 76, 1900-1901.                 | 1.9 | 7         |
| 150 | Stress-Corrosion Cracking of Spin-on Glass Thin Films. Materials Research Society Symposia<br>Proceedings, 1998, 511, 171.                                                  | 0.1 | 7         |
| 151 | Indentation Fracture Toughness Measurements of Low Dielectric Constant Materials. Materials<br>Research Society Symposia Proceedings, 2003, 766, 931.                       | 0.1 | 6         |
| 152 | Structure–property relationships for methyl-terminated alkyl self-assembled monolayers. Chemical<br>Physics Letters, 2011, 512, 243-246.                                    | 1.2 | 6         |
| 153 | Shoulder fillet effects in strength distributions of microelectromechanical system components.<br>Journal of Micromechanics and Microengineering, 2020, 30, 125013.         | 1.5 | 6         |
| 154 | Effects of Curing Temperature on the Mechanical Reliability of Low Dielectric-Constant<br>Spin-on-Glasses. Materials Research Society Symposia Proceedings, 2000, 612, 541. | 0.1 | 5         |
| 155 | Alumina Agglomerate Effects on Toughness urve Behavior of Alumina–Mullite Composites. Journal of the American Ceramic Society, 2000, 83, 3089-3094.                         | 1.9 | 5         |
| 156 | Stable dielectric fracture at interconnects from electromigration stresses. Acta Materialia, 2002, 50, 2627-2637.                                                           | 3.8 | 5         |
| 157 | Stress stability and thermo-mechanical properties of reactively sputtered alumina films. Journal of<br>Materials Science, 2005, 40, 6345-6355.                              | 1.7 | 5         |
| 158 | Two-dimensional strain-mapping by electron backscatter diffraction and confocal Raman spectroscopy. Journal of Applied Physics, 2017, 122, 205101.                          | 1.1 | 5         |
| 159 | Thermal activation effects in crack propagation and reliability of fused silica. Journal of the American<br>Ceramic Society, 2019, 102, 7575-7583.                          | 1.9 | 5         |
| 160 | Universal fatigue curves for ceramics using indentation flaws. Journal of Materials Science Letters, 1983, 2, 683-684.                                                      | 0.5 | 4         |
| 161 | Stress Hysteresis and Mechanical Characterization of Plasma-Enhanced Chemical Vapor Deposited Dielectrics. Materials Research Society Symposia Proceedings, 2001, 695, 1.   | 0.1 | 4         |
| 162 | Advances in metrology for the determination of Young's modulus for low-k dielectric thin films. ,                                                                           |     | 4         |

2012, , . 162

| #   | Article                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Decoupling small-scale roughness and long-range features on deep reactive ion etched silicon surfaces. Journal of Applied Physics, 2013, 114, 113506.                           | 1.1 | 4         |
| 164 | On the bending strength of single-crystal silicon theta-like specimens Rebecca Kirkpatrick. MRS<br>Communications, 2013, 3, 113-117.                                            | 0.8 | 4         |
| 165 | Stress and strain mapping of micro-domain bundles in barium titanate using electron backscatter diffraction. Journal of Materials Science, 2017, 52, 12608-12623.               | 1.7 | 4         |
| 166 | Irreversible Tensile Stress Development in PECVD Silicon Nitride Films. Materials Research Society<br>Symposia Proceedings, 2003, 795, 235.                                     | 0.1 | 3         |
| 167 | Stress Stability of PECVD Silicon Nitride Films During Device Fabrication. Materials Research Society Symposia Proceedings, 2003, 766, 631.                                     | 0.1 | 3         |
| 168 | Effect of storage in aqueous environments on polymer–metal interfacial fracture. Journal of<br>Materials Research, 2004, 19, 557-567.                                           | 1.2 | 3         |
| 169 | Strength and Fracture Measurements at the Nano Scale. AIP Conference Proceedings, 2007, , .                                                                                     | 0.3 | 3         |
| 170 | Frictional properties of native and functionalized type I collagen thin films. Applied Physics Letters, 2013, 103, 143703.                                                      | 1.5 | 3         |
| 171 | Stochastic behavior of nanoscale dielectric wall buckling. Journal of Applied Physics, 2016, 119, .                                                                             | 1.1 | 3         |
| 172 | A flexible model for instrumented indentation of viscoelastic-plastic materials. MRS Communications, 2018, 8, 586-590.                                                          | 0.8 | 3         |
| 173 | Effect of Changes in Grain Boundary Toughness on the Strength of Alumina. Materials Research<br>Society Symposia Proceedings, 1986, 78, 199.                                    | 0.1 | 2         |
| 174 | Load-Displacement Behavior During Sharp Indentation of Viscous-Elastic-Plastic Materials. Materials<br>Research Society Symposia Proceedings, 2000, 649, 151.                   | 0.1 | 2         |
| 175 | Model for instrumented indentation of brittle open-cell foam. MRS Communications, 2018, 8, 1267-1273.                                                                           | 0.8 | 2         |
| 176 | Residual stress in polycrystalline alumina: Comparison of two-dimensional maps and integrated scans<br>in fluorescence-based measurements. Acta Materialia, 2018, 159, 309-319. | 3.8 | 2         |
| 177 | Lamellar and bundled domain rotations in barium titanate. Journal of Materials Science, 2019, 54, 116-129.                                                                      | 1.7 | 2         |
| 178 | Mechanical Properties of One-Dimensional Nanostructures. Nanoscience and Technology, 2010, , 571-611.                                                                           | 1.5 | 2         |
| 179 | In situ Analysis of Materials Under Mechanical Stress: A Novel Instrument for Simultaneous<br>Nanoindentation and Raman Spectroscopy. , 2013, , .                               |     | 2         |
| 180 | Apatite Growth on Bioactive Glass in Artificial Saliva. Materials Research Society Symposia<br>Proceedings, 2000, 662, 1.                                                       | 0.1 | 1         |

| #   | Article                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | The effects of inter-surface cohesive tractions on linear and penny-shaped cracks. International Journal of Fracture, 2003, 119, 103-124.                                                    | 1.1 | 1         |
| 182 | Toughness and Contact Behavior of Conventional and Low-k Dielectric Thin Films. Materials Research<br>Society Symposia Proceedings, 2003, 795, 282.                                          | 0.1 | 1         |
| 183 | Uniaxial and Biaxial Mechanical Behavior of Human Amnion. Materials Research Society Symposia<br>Proceedings, 2004, 844, 1.                                                                  | 0.1 | 1         |
| 184 | A simple method of shortâ€ŧerm mechanical reliability prediction for ceramics in reactive environments.<br>Journal of the American Ceramic Society, 2018, 101, 2727-2731.                    | 1.9 | 1         |
| 185 | Weakly anisotropic residual contact stress in silicon demonstrated by electron backscatter diffraction and expanding cavity models. Applied Physics Letters, 2018, 113, 231903.              | 1.5 | 1         |
| 186 | Microscale Mapping of Structure and Stress in Barium Titanate. Journal of Research of the National<br>Institute of Standards and Technology, 2020, 125, 125013.                              | 0.4 | 1         |
| 187 | Controlled Indentation Flaws for the Construction of Toughness and Fatigue Master Maps. Journal of Research of the National Bureau of Standards (United States), 1984, 89, 453.              | 0.3 | 1         |
| 188 | Mechanical and Electrical Properties of Alkanethiol Self-Assembled Monolayers: A Conducting-Probe Atomic Force Microscopy Study. Nanoscience and Technology, 2011, , 439-471.                | 1.5 | 1         |
| 189 | Stress Measurements in Alumina by Optical Fluorescence: Revisited. Journal of Research of the National Institute of Standards and Technology, 2019, 124, 1-15.                               | 0.4 | 1         |
| 190 | Application of a physically consistent theory of brittle fracture. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2002, 82, 3151-3162. | 0.7 | 0         |
| 191 | Effects of topography and multi-asperity contacts on nano-scale elastic property measurements by atomic force acoustic microscopy. AIP Conference Proceedings, 2007, , .                     | 0.3 | 0         |
| 192 | Theta-like specimen to determine tensile strength at the micro scale. , 2010, , .                                                                                                            |     | 0         |
| 193 | Blunt scratch strength of polycrystalline alumina. Journal of the American Ceramic Society, 2018, 101, 16-19.                                                                                | 1.9 | 0         |
| 194 | 1000 at 1000: an indentation toughness method. Journal of Materials Science, 2020, 55, 15069-15073.                                                                                          | 1.7 | 0         |
| 195 | Microstructural Control of Indentation Crack Extension under Externally Applied Stress. , 2005, , 57-67.                                                                                     |     | Ο         |