Diana Gaspar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7382818/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Crowding – (in Cell Culture). , 2020, , 483-509.		2
2	Designing Microenvironments for Optimal Outcomes in Tissue Engineering and Regenerative Medicine: From Biopolymers to Culturing Conditions. , 2019, , 119-119.		1
3	In vitro and preclinical characterisation of compressed, macro-porous and collagen coated poly- Îμ -caprolactone electro-spun scaffolds. Biomedical Materials (Bristol), 2019, 14, 055007.	1.7	3
4	Multifactorial bottomâ€up bioengineering approaches for the development of living tissue substitutes. FASEB Journal, 2019, 33, 5741-5754.	0.2	26
5	Local pharmacological induction of angiogenesis: Drugs for cells and cells as drugs. Advanced Drug Delivery Reviews, 2019, 146, 126-154.	6.6	13
6	Preparation and Characterization of Tissue Surrogates Rich in Extracellular Matrix Using the Principles of Macromolecular Crowding. Methods in Molecular Biology, 2019, 1952, 245-259.	0.4	7
7	Polydispersity and negative charge are key modulators of extracellular matrix deposition under macromolecular crowding conditions. Acta Biomaterialia, 2019, 88, 197-210.	4.1	47
8	Editorial: Biofunctional biomaterials and cellular systems for diagnostic and therapeutic purposes. Biomedical Materials (Bristol), 2019, 14, 020201.	1.7	1
9	Translational Research Symposium—collaborative efforts as driving forces of healthcare innovation. Journal of Materials Science: Materials in Medicine, 2019, 30, 133.	1.7	1
10	Development macro-porous electro-spun meshes with clinically relevant mechanical properties—a technical note. Biomedical Materials (Bristol), 2019, 14, 024103.	1.7	6
11	Relevance of bioreactors and whole tissue cultures for the translation of new therapies to humans. Journal of Orthopaedic Research, 2018, 36, 10-21.	1.2	45
12	Molecular Crowding – (in Cell Culture). , 2018, , 1-27.		1
13	Scaffold and scaffoldâ€free selfâ€assembled systems in regenerative medicine. Biotechnology and Bioengineering, 2016, 113, 1155-1163.	1.7	34
14	Influence of porosity and pore shape on structural, mechanical and biological properties of poly <i>Ϊμ</i> -caprolactone electro-spun fibrous scaffolds. Nanomedicine, 2016, 11, 1031-1040.	1.7	38
15	Engineering in vitro complex pathophysiologies for drug discovery purposes. Drug Discovery Today, 2016, 21, 1341-1344.	3.2	5
16	Macromolecular crowding meets oxygen tension in human mesenchymal stem cell culture - A step closer to physiologically relevant in vitro organogenesis. Scientific Reports, 2016, 6, 30746.	1.6	66
17	Progress in cell-based therapies for tendon repair. Advanced Drug Delivery Reviews, 2015, 84, 240-256.	6.6	152
18	The biophysical, biochemical, and biological toolbox for tenogenic phenotype maintenance in vitro. Trends in Biotechnology, 2014, 32, 474-482.	4.9	73

#	Article	IF	CITATIONS
19	Preferential cell response to anisotropic electro-spun fibrous scaffolds under tension-free conditions. Journal of Materials Science: Materials in Medicine, 2012, 23, 137-148.	1.7	38