
Makoto Miura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/738264/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanobubble formation from ionic vacancies in an electrode reaction on a fringed disk electrode under a uniform vertical magnetic field â^1. Formation process in a vertical magnetohydrodynamic (MHD) flow. Journal of Electroanalytical Chemistry, 2022, 914, 116291.	3.8	4
2	Nanobubble formation from ionic vacancies in an electrode reaction on a fringed disk electrode under a uniform vertical magnetic field – 2. Measurement of the angular velocity of a vertical magnetohydrodynamic (MHD) flow by the microbubbles originating from ionic vacancies. Journal of Electroanalytical Chemistry, 2022, 916, 116375.	3.8	3
3	Theory of Chiral Electrodeposition by Chiral Micro-Nano-Vortices under a Vertical Magnetic Field -1: 2D Nucleation by Micro-Vortices. Magnetochemistry, 2022, 8, 71.	2.4	Ο
4	Long-Term Electrodeposition under a Uniform Parallel Magnetic Field. 1. Instability of Two-Dimensional Nucleation in an Electric Double Layer. Journal of Physical Chemistry B, 2020, 124, 11854-11869.	2.6	8
5	Excess heat production in the redox couple reaction of ferricyanide and ferrocyanide. Scientific Reports, 2020, 10, 20072.	3.3	7
6	Theory of microscopic electrodeposition under a uniform parallel magnetic field - 1. Nonequilibrium fluctuations of magnetohydrodynamic (MHD) flow. Journal of Electroanalytical Chemistry, 2019, 848, 113254.	3.8	17
7	Excess Heat Production by the Pair Annihilation of Ionic Vacancies in Copper Redox Reactions. Scientific Reports, 2019, 9, 13695.	3.3	8
8	Magneto-Dendrite Effect: Copper Electrodeposition under High Magnetic Field. Scientific Reports, 2017, 7, 45511.	3.3	29
9	Origin of Nanobubbles Electrochemically Formed in a Magnetic Field: Ionic Vacancy Production in Electrode Reaction. Scientific Reports, 2016, 6, 28927.	3.3	15
10	Lifetime of Ionic Vacancy Created in Redox Electrode Reaction Measured by Cyclotron MHD Electrode. Scientific Reports, 2016, 6, 19795.	3.3	18
11	Microbubble Formation from Ionic Vacancies in Copper Anodic Dissolution under a High Magnetic Field. Electrochemistry, 2015, 83, 549-553.	1.4	14
12	Microbubble Formation from Ionic Vacancies in Copper Electrodeposition under a High Magnetic Field. Electrochemistry, 2014, 82, 654-657.	1.4	16
13	Non-electrochemical Nanobubble Formation in Ferricyanide/Ferrocyanide Redox Reaction by the Cyclotron Effect under a High Magnetic Field. Electrochemistry, 2013, 81, 890-892.	1.4	14
14	Origin of Nanobubble - Formation of Stable Vacancy in Electrolyte Solution. ECS Transactions, 2009, 16, 181-189.	0.5	23