
Michael J Lawler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7382561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atmospheric clusters to nanoparticles: Recent progress and challenges in closing the gap in chemical composition. Journal of Aerosol Science, 2021, 153, 105733.	1.8	35
2	The development of a miniaturised balloon-borne cloud water sampler and its first deployment in the high Arctic. Tellus, Series B: Chemical and Physical Meteorology, 2021, 73, 1-12.	0.8	7
3	Predictability of Seawater DMS During the North Atlantic Aerosol and Marine Ecosystem Study (NAAMES). Frontiers in Marine Science, 2021, 7, .	1.2	11
4	Composition of Ultrafine Particles in Urban Beijing: Measurement Using a Thermal Desorption Chemical Ionization Mass Spectrometer. Environmental Science & Technology, 2021, 55, 2859-2868.	4.6	24
5	Estimation of Possible Primary Biological Particle Emissions and Rupture Events at the Southern Great Plains ARM Site. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034679.	1.2	3
6	Insights into the molecular composition of semi-volatile aerosols in the summertime central Arctic Ocean using FIGAERO-CIMS. Environmental Science Atmospheres, 2021, 1, 161-175.	0.9	18
7	New Insights Into the Composition and Origins of Ultrafine Aerosol in the Summertime High Arctic. Geophysical Research Letters, 2021, 48, e2021GL094395.	1.5	17
8	Indirect Measurements of the Composition of Ultrafine Particles in the Arctic Lateâ€Winter. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035428.	1.2	2
9	Seasonal Differences and Variability of Concentrations, Chemical Composition, and Cloud Condensation Nuclei of Marine Aerosol Over the North Atlantic. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033145.	1.2	36
10	Size-dependent influence of NO _x on the growth rates of organic aerosol particles. Science Advances, 2020, 6, eaay4945.	4.7	61
11	Atmospheric fungal nanoparticle bursts. Science Advances, 2020, 6, eaax9051.	4.7	19
12	North Atlantic marine organic aerosol characterized by novel offline thermal desorption mass spectrometry: polysaccharides, recalcitrant material, and secondary organics. Atmospheric Chemistry and Physics, 2020, 20, 16007-16022.	1.9	9
13	Chemical characterization of nanoparticles and volatiles present in mainstream hookah smoke. Aerosol Science and Technology, 2019, 53, 1023-1039.	1.5	8
14	Molecular-Level Understanding of Synergistic Effects in Sulfuric Acid–Amine–Ammonia Mixed Clusters. Journal of Physical Chemistry A, 2019, 123, 2420-2425.	1.1	57
15	Chemical composition of ultrafine aerosol particles in central Amazonia during the wet season. Atmospheric Chemistry and Physics, 2019, 19, 13053-13066.	1.9	11
16	Evidence for Diverse Biogeochemical Drivers of Boreal Forest New Particle Formation. Geophysical Research Letters, 2018, 45, 2038-2046.	1.5	31
17	Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors. Science Advances, 2018, 4, eaau5363.	4.7	164
18	Size resolved chemical composition of nanoparticles from reactions of sulfuric acid with ammonia and dimethylamine. Aerosol Science and Technology, 2018, 52, 1120-1133.	1.5	26

MICHAEL J LAWLER

#	Article	IF	CITATIONS
19	Water condensation-based nanoparticle charging system: Physical and chemical characterization. Aerosol Science and Technology, 2018, 52, 1167-1177.	1.5	6
20	Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9122-9127.	3.3	118
21	The role of ions in new particle formation in the CLOUD chamber. Atmospheric Chemistry and Physics, 2017, 17, 15181-15197.	1.9	50
22	The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature, 2016, 533, 527-531.	13.7	540
23	Modeling the thermodynamics and kinetics of sulfuric acid-dimethylamine-water nanoparticle growth in the CLOUD chamber. Aerosol Science and Technology, 2016, 50, 1017-1032.	1.5	13
24	The effect of acid–base clustering and ions on the growth of atmospheric nano-particles. Nature Communications, 2016, 7, 11594.	5.8	116
25	Multiple new-particle growth pathways observed at the US DOE Southern Great Plains field site. Atmospheric Chemistry and Physics, 2016, 16, 9321-9348.	1.9	35
26	Unexpectedly acidic nanoparticles formed in dimethylamine–ammonia–sulfuric-acid nucleation experiments at CLOUD. Atmospheric Chemistry and Physics, 2016, 16, 13601-13618.	1.9	24
27	Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments. Atmospheric Chemistry and Physics, 2016, 16, 293-304.	1.9	29
28	Secondary Organic Aerosol Formation and Organic Nitrate Yield from NO ₃ Oxidation of Biogenic Hydrocarbons. Environmental Science & Technology, 2014, 48, 11944-11953.	4.6	178
29	Insight into Acid–Base Nucleation Experiments by Comparison of the Chemical Composition of Positive, Negative, and Neutral Clusters. Environmental Science & Technology, 2014, 48, 13675-13684.	4.6	51
30	Molecular constraints on particle growth during new particle formation. Geophysical Research Letters, 2014, 41, 6045-6054.	1.5	30
31	Composition of 15–85 nm particles in marine air. Atmospheric Chemistry and Physics, 2014, 14, 11557-11569.	1.9	39
32	Atmospheric amines and ammonia measured with a chemical ionization mass spectrometer (CIMS). Atmospheric Chemistry and Physics, 2014, 14, 12181-12194.	1.9	121
33	Observations of I ₂ at a remote marine site. Atmospheric Chemistry and Physics, 2014, 14, 2669-2678.	1.9	32
34	HOCl and Cl ₂ observations in marine air. Atmospheric Chemistry and Physics, 2011, 11, 7617-7628.	1.9	109
35	Reactive Halogens in the Marine Boundary Layer (RHaMBLe): the tropical North Atlantic experiments. Atmospheric Chemistry and Physics, 2010, 10, 1031-1055.	1.9	66
36	A chemical ionization mass spectrometer for continuous underway shipboard analysis of dimethylsulfide in near-surface seawater. Ocean Science, 2009, 5, 537-546.	1.3	52

#	Article	IF	CITATIONS
37	Pollutionâ€enhanced reactive chlorine chemistry in the eastern tropical Atlantic boundary layer. Geophysical Research Letters, 2009, 36, .	1.5	61