Julien Pilmé

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7382471/publications.pdf

Version: 2024-02-01

430874 434195 1,030 43 18 31 citations h-index g-index papers 43 43 43 1353 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nine questions on energy decomposition analysis. Journal of Computational Chemistry, 2019, 40, 2248-2283.	3.3	113
2	Structure and Stability of Mâ^'CO, M = First-Transition-Row Metal:  An Application of Density Functional Theory and Topological Approaches. Journal of Physical Chemistry A, 2003, 107, 4506-4514.	2.5	74
3	Experimental and theoretical evidences of the influence of hydrogen bonding on the catalytic activity of a series of 2-hydroxy substituted quaternary ammonium salts in the styrene oxide/CO2 coupling reaction. Journal of Catalysis, 2016, 333, 29-39.	6.2	66
4	An Electron Localization Function Study of the Geometry of d0 Molecules of the Period 4 Metals Ca to Mn. Inorganic Chemistry, 2004, 43, 3248-3256.	4.0	61
5	Advancing beyond charge analysis using the electronic localization function: Chemically intuitive distribution of electrostatic moments. Journal of Computational Chemistry, 2008, 29, 1440-1449.	3.3	60
6	Comparative Study of the Bonding in the First Series of Transition Metal 1:1 Complexes Mâ^'L (M = Sc,,) Tj ETC	QqQ <u>Q</u> g0 rg	BT /Overlock :
7	QTAIM Analysis in the Context of Quasirelativistic Quantum Calculations. Journal of Chemical Theory and Computation, 2014, 10, 4830-4841.	5.3	51
8	New insights in quantum chemical topology studies using numerical gridâ€based analyses. Journal of Computational Chemistry, 2011, 32, 3207-3217.	3.3	47
9	Introducing the ELF Topological Analysis in the Field of Quasirelativistic Quantum Calculations. Journal of Chemical Theory and Computation, 2012, 8, 2985-2990.	5.3	43
10	Reinterpretation of Three Crystal Structures of Alkali Oxoiodate(V) – Description of the [I ₃ O ₈] [–] Anion and the Infinite 2D [I ₃ O ₈ [–]] _{â^ž} Anion. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 636, 1368-1379.	1.2	35
11	211 At-labeled agents for alpha-immunotherapy: On the inÂvivo stability of astatine-agent bonds. European Journal of Medicinal Chemistry, 2016, 116, 156-164.	5.5	28
12	A Topological Study of the Geometry of AF6E Molecules:Â Weak and Inactive Lone Pairs. Inorganic Chemistry, 2006, 45, 6198-6204.	4.0	27
13	Quantum Chemical Topology Study of the Water-Platinum(II) Interaction. Inorganic Chemistry, 2013, 52, 1217-1227.	4.0	27
14	Unusual Bond Formation in Aspartic Protease Inhibitors: A Theoretical Study. Chemistry - A European Journal, 2007, 13, 5388-5393.	3.3	25
15	Phosphoryl Group as a Strong Ïf-Donor Anionic Phosphine-Type Ligand: A Combined Experimental and Theoretical Study on Long-Lived Room Temperature Luminescence of the [Ru(tpy)(bpy)(Ph ₂ PO)] ⁺ Complex. Inorganic Chemistry, 2014, 53, 1946-1948.	4.0	25
16	Spin–orbit coupling as a probe to decipher halogen bonding. Physical Chemistry Chemical Physics, 2018, 20, 29616-29624.	2.8	21
17	Comments on the nature of the bonding in oxygenated dinuclear copper enzyme models. Computational and Theoretical Chemistry, 2006, 764, 77-86.	1.5	19
18	Electron localization function from density components. Journal of Computational Chemistry, 2017, 38, 204-210.	3.3	19

#	Article	IF	Citations
19	On the Interplay between Chargeâ€Shift Bonding and Halogen Bonding. ChemPhysChem, 2020, 21, 240-250.	2.1	18
20	Ligand Close Packing, Molecular Compactness, the Methyl Tilt, Molecular Conformations, and a New Model for the Anomeric Effect. Chemistry - A European Journal, 2010, 16, 3663-3675.	3.3	17
21	Electronic structures and geometries of the XF3 (X = Cl, Br, I, At) fluorides. Journal of Chemical Physics, 2015, 143, 114306.	3.0	17
22	Quantum Chemical Topology of the Electron Localization Function in the Field of Attosecond Electron Dynamics. Journal of Physical Chemistry Letters, 2018, 9, 844-850.	4.6	17
23	About the collapse of the $3.3\hat{a}$, \hat{l} /4m CH stretching band with ionization in polycyclic aromatic hydrocarbons: Configuration interaction and quantum Monte Carlo studies of the CH fragment. Journal of Chemical Physics, 2010, 133, 054301.	3.0	15
24	Topological analyses of time-dependent electronic structures: application to electron-transfers in methionine enkephalin. Journal of Molecular Modeling, 2014, 20, 2368.	1.8	15
25	Spinâ€driven activation of dioxygen in various metalloenzymes and their inspired models. Journal of Computational Chemistry, 2011, 32, 1178-1182.	3.3	14
26	A possible 2,1â†'3,1 isomerization mechanism in zirconocene-catalyzed propene polymerization: An application of the density functional theory and combined ONIOM approach. Journal of Organometallic Chemistry, 2007, 692, 4227-4236.	1.8	12
27	Regioselective N-alkylation of imidazo [4,5-b] pyridine-4-oxide derivatives: an experimental and DFT study. Tetrahedron Letters, 2009, 50, 1828-1833.	1.4	12
28	What can tell the quantum chemical topology on carbon–astatine bonds?. Molecular Physics, 2016, 114, 1326-1333.	1.7	11
29	The bonding picture in hypervalent XF ₃ (X = Cl, Br, I, At) fluorides revisited with quantum chemical topology. Journal of Computational Chemistry, 2017, 38, 2753-2762.	3.3	11
30	Crystallographic structure and crystal field parameters in the [AnIV(DPA)3]2â^' series, An = Th, U, Np, Pu. Physical Chemistry Chemical Physics, 2020, 22, 14293-14308.	2.8	10
31	Quantum chemical topology at the spin–orbit configuration interaction level: Application to astatine compounds. Journal of Computational Chemistry, 2020, 41, 2055-2065.	3.3	10
32	New insights in chemical reactivity from quantum chemical topology. Journal of Computational Chemistry, 2021, 42, 840-854.	3.3	10
33	Exploring The Sequence of Electron Density Along The Chemical Reactions Between Carbonyl Oxides And Ammonia/Water Using Bond Evolution Theory. ChemPhysChem, 2021, 22, 1792-1801.	2.1	10
34	Probing Raman Enhancement in a Dopamine–Ti ₂ O ₄ Hybrid Using Stretched Molecular Geometries. Journal of Physical Chemistry A, 2014, 118, 1196-1202.	2.5	8
35	Toward an Understanding of the Oxidation Process of Methionine Enkephalin: A Combined Electrochemistry, Quantum Chemistry and Quantum Chemical Topology Analysis. Journal of Physical Chemistry B, 2015, 119, 6885-6893.	2.6	6
36	Understanding phase transition in the ZnSiP2 chalcopyrite, a quantum chemical topology study. Theoretical Chemistry Accounts, 2017, 136, 1.	1.4	6

Julien Pilmé

#	Article	IF	CITATIONS
37	Quantum Chemical Topology in the Field of Quasirelativistic Quantum Calculations. Challenges and Advances in Computational Chemistry and Physics, 2016, , 553-582.	0.6	4
38	The Topological Analysis of the ELFx Localization Function: Quantitative Prediction of Hydrogen Bonds in the Guanine–Cytosine Pair. Molecules, 2021, 26, 3336.	3.8	3
39	Astatine Facing Janus: Halogen Bonding vs. Charge-Shift Bonding. Molecules, 2021, 26, 4568.	3.8	3
40	Using the unusual weak N…CO bond as a solvation probe. Molecular Simulation, 2014, 40, 185-195.	2.0	2
41	•OH oxidation of methionine in the presence of discrete water molecules: DFT, QTAIM and valence bond analyses. Structural Chemistry, 2020, 31, 719-730.	2.0	2
42	Triggering Electron Transfer in Co(I) Dimers: Computational Evidences for a Reversible Disproportionation Mechanism. ChemPhysChem, 2021, 22, 788-795.	2.1	1
43	Quantum chemical topology from tight augmented core densities. Journal of Computational Chemistry, 2020, 41, 1616-1627.	3.3	0